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CHAPTER I

INTRODUCTION

1.1 Objective

An approximate expression for the far zone field scattered by the vertex of

a finite perfectly conducting wedge is obtained. The solution is cast in the form

of the UTD and is based on asymptotic equivalent currents found using modified

PTD concepts. The faces of the wedge must be flat (the normal to each individual

face is a constant everywhere on the face except at the edge) and the edges must

be straight. For plane wave incidence from an arbitrary direction the first order

contribution from each vertex to the far zone scattered field is obtained.

1.2 Motivation

Since diffraction it a local phenomena at high frequencies the results obtained

for a finite wedge may be applied to much more complex bodies made up of simple

shapes. The field scattered by a three-.dinienaional shape constructed from fiat

plates may be approximated to first order as the sum of the contributions from

each individual corner. The first order solution should be reasonably accurate in

or near the specular regions as long as the object is convex. A convex body is

defined here as a closed surfwat made up of fiat plates such that all of the exterior

wedge angles, taken between faces and exterior to the surface, are greater than 180

degrees. A simple examplc of an object that does not meet this requirement is a
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corner reflector. The effect of shadowing of the faces by other parts of the object,

however, must be taken into account. A brief description of how this is done is

gLiven in Section 5.2.

1.3 Problem History

Thele are many approximate solutions to the scattered field from a finite

perfectly conducting wedge. Some of these include the Physical Optics approx-

imation, th, Method of Equivalent Currents [1], the previous Corner Diffraction

coefficients [21, the Uniform Geometrical Theory of Diffraction [3],and the Physicel

Theory of Diffraction [41. The Physical Optics, Method of Equivalent Currents,

rcz P!iysizal 'Them of Diffraction will be described briefly in the next chap-

ter. Thv previous Corner Diffraction Coefficient was heuristically derived from the

equivalent rur, mts of Ryan and Peters [11 and the Uniform Geometrical Theory

of Diffraction [3]. Althaugh it gives goocd results in the backscatter region, it has

been found to give unsatisfactory results for certain bistatic cases. Specifically, it

has problezas at the so-called false shadow boundaries which will be illustrated ir.

Chapter II.

1.4 Outline of Solution

It in assumed that the incident field, and therefore the r attered field, ip a

time harmonic field with time dependence wiven by e6 ji, which will be suppressed

throughout this report. The solution will be rased on the PTD and cast into the

form of the method of equivalent currvnts and then into diffraction coefficienta.

This will be done as follows. The actual currents on each face of the plate will be

approximated by the PTD currents. The resulting double integral ovea :he surface

is then reduced to a line integral along the edge by doing the integration over

2



one coordinate in closed form. This is done by taking the asymptotic endpoint

contribution in one case and by the application of some algebraic manipulation

followed by the use of Stoke's theorem in the other case. The remaining integral

along the edge is written in the form of a radiation integral so that the equivalent

currents may be identified. Then this integral is evaluated using the method of

stationary phase to obtain the contribution from each corner.

1.5 Notation, Abbreviations and Symbols

This section contains some information on the notation, abbreviations, and

symbols that are used in this report. Normally the term equivalent currents refers

to the surface currents used in the equivalence theorem. In this report, however, the

terms equivalent edge currents and equivalent currents will be used interchangeably

to refer to equivalent edge currents.

1.6.1 Symbols

These are some of the symbols used. Most of them are also defined as they

first appear in the text.

= diffracted ray elevation angle in edge fixed coordinates

- diffracted ray elevation unit vector in edge fixed coordinates

incident ray elevation angle in edge fixed coordinates

j31 _ incident ray elevation unit vector in edge fixed coordinates

A = free space wavelength of the time harmonic fields

4, = diffracted ray azimuth angle in edge fixed coordinates

or in pattern coordinates (depending on context)

4= diffracted ray azimuth unit vector in edge fixed

3



coordinates or in pattern coordinates (depending on context)

= incident ray azimuth angle in edge fixed coordinates

or in pattern -coordinates (depending on context)

= incident ray azimuth unit vector in edge fixed

coordinates or in pattern coordinates (depending on context)

S= R adar Cross Section

0 = diffracted ray elevation angle in pattern coordinates

i - diffracted ray elevation unit vector in pattern coordinates

01 = incident ray elevation angle in pattern coordinates

if = incident ray elevation vector in pattern coordinates

w = angular frequency

b = bi-normal unit vector

SD,,h = soft, hard diffraction coefficients

Dh = soft, hard corner diffraction coefficients

2D = cross polarized corner diffraction coefficient

(hard incidence, soft diffracted)

= corner diffracted field

,gd =_ diffracted field

gi, 1d = incident field

EF, H' = components of the incident field tangent to the edge

F = transition function

Ii = ,r--T

le,m = electric equivalent currents

4



k = 2w/\

M magnetic equivalent current

n = wedge angle parameter

S= unit vector norm al to the face of the wedge

_ = unit vector tangent to the edge

S' = incident ray direction

S = diffracted ray direction

Y0 = admittance of free space

Zo = impedance of free space

Components of the equivalent currents will be designated by placing appropriate

superscripts on the symbols Ie, Im, and M.

1.5.2 Abbreviations

GO = Geometrical Optics

GTD = Geometrical Theory of Diffraction

MM = Moment Method

PEC = Perfect Electrical Conductor

P0 = Physical Optics

PTD = Physical Theory of Diffraction

RCS = Radar Cross Section

UTD = Uniform Geometrical Theory of Diffraction

5
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Figure 1: Edge Fixed Coordinates.

1.5.3 Edge Fixed Coordinate System

An edge fixed coordinate system will be used throughout the discussion of the

equivalent currents and the corner diffraction coefficient. As shown in Figure 1,

the origin of the right hand system (b,n,t) is placed on the edge. The point on

the edge where the origin is placed will depend on the problem being considered

and will be specified. The ft direction is chosen so ft is normal to the face under

consideration and directed outward from the interior of the body. In the case of a

fiat plate the outward normal is ambiguous, and the positive fh direction may be

arbitrarily chosen in either of the two directions. The i axis is chosen tangent to

6



the edge. The positive i direction is chosen such that the positive b axis (b = h x 1)

will lie on the wedge face under consideration. Since only one face is considered at

a time this results in a convenient and unambiguous coordinate system for all of

the problems considered here.

The incident ray is described by the spherical coordinate system (at,'P, 0')

based on an axis in the -i direction. The incident field may, therefore, be described

as a sum of its components in the 1' and qt directions since it is always assumed to

be a plane wave in this report. Similarly the diffracted rays are described by the

spherical coordinate system (a,1, ) based on an axis in the positive 1 direction.

The radial component of the diffracted field will be zero in the far zone, resulting

in a field which may be expressed in terms of its 1 and ý components. The angles

and unit vectors are shown in Figure 1.

1.5.4 Radar Cross Section

The numerical results are expressed in terms of Radar Cross Section through-

out this report. Radar Cross Section is the mathematical area that intercepts the

power from the incident wave on the target, which if scattered in an isotropic man-

ner would produce the same scattered power density as produced by the actual

target assuming that both the transmitter and the receiver are in the far zone of

the target; i.e. rl,r2 > 2D 2 /A, where D is the maximum dimension of the target

and rl,r 2 are defined in Figure 2. Letting S= power density incident on the

target from the transmitter (constant over the target for plane wave incidence);

S"c= power density scattered from the target toward the receiver (constant, see

S') results in

-,m [ 4aio ... = SC(O .). (1.1)
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Transmitter

S/ r, Target

Receiver

Figure 2: Definition of Distances ri and r2.

Solving for a gives

a= lim 4wr . (1.2)r2--400 Si(et, O)

Since for most problems of practical importance and all of the problems done here

the medium is free space the power densities axe simply related to the fields by

S = E1--2 = H12 Zo (1.3)zo

where lEt and IHI axe the rms values of the electric and magnetic fields, respec-

tively, at the point of interest, and ZO is the impedance of free space. Therefore

the RCS reduces to

S lim 4 2 Esc12 = lim 4wra 2  (1.4)
r2- 00 I P2 P 2`0 -- -I

where EOCI and IH~cI are the magnitude of the scattered electric and magnetic

fields, respectively, at the receiver and IE'I and IHtI are the magnitude of the

incident electric and magnetic fields at the target.

8



1.6 Pattern Coordinate System

The usual spherical coordinate system is used for all of the results. The source

is located in the far zone direction specified by the spherical angles 0' and e1 (or

sometimes by 0' and 4ki). Similarly the observation point is located in the far zone

direction specified by the spherical angles 0 and 0. In the special case of backscatter

both the source and receiver locations will be indicated by 0 and 0. Notice that 0

and 0' are also used in defining the observation and source directions, respectively,

in edge fixed coordinates, but it should be obvious from the context which angle is

being identified. The RCS is given in terms of the polarization of the transmitted

and received fields. The following definitions will be used throughout this report

IEC2
,eq = 4 7rr2L±. (1.5)

IES~l
- 4wr2 '"0 (1.7)

a09 = 4r (1.8)

where JE1 I and [Eý are the magnitude of the 4" and components, respectively,

of the incident field at the target. Similarly IE$CI and IEjCI are the ý and

components of the scattered field at the receiver. The first subscript on ff refers

to the polarization of the received field; whereas, the second one refers to the

polarization of the incident field, both in pattern coordinates. For the general case

of bistatic scattering, the notation will remain the same even though 0 and 0' (and

9



and 4/) are in different directions. All results shown are given in terms of either

dB relative to a dquare meter or dB relative to a square wavelength depending on

the specific problem. They are simply related to the above expressions by

o(in dB) = 10logj0 (1.9)

or

oo(in dB) = 20 logiO (12'I1') + 101oglo(47r) (1.10)

for each of the combinations of transrnitting and receiving polarizations.

10



CHAPTER U

THEORETICAL BACKGROUND

2.1 Introduction

The high frequency methods used to derive the new far zone corner diffrac-

tion coefficients are described briefly here. Geometrical Optics (GO) and Physical

Optics (PO) are discussed first since both of these are important in the implemen-

tation of the new solution. The basic concepts of the Physical Theory of Diffraction

(PTD) are then given. Following this is a description of the differences between

the Method of Equivalent Currents as proposed by Ryan and Peters (1] and the

method used to derive the new equivalent currents. A corner diffraction coefficient

based on the old equivalent currents is also given. The results from the method of

stationary phase are then described briefly.

2.2 Geometrical Optics

A brief summary of Geometrical Optics (GO) is given here. Further informa-

tion on the subject nuy be found in references 151 - [8j, and the basic principles

are covered in many antennas textbooks, such as 191. The propagation of elec-

tromagnetic energy through isotropic, hmtqles media can be described using GO.

It Wt, long been known that at high frequencies electromagnetic energy can be

viewed as traveling along well defined paths known as rays. The ray paths, in

any continuous medium, may be determined using Fermat's principle which states

11
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Figure 3: Astigmatic ray tube.

the energy will flow along the path of shortest electrical length between any two

points in the medium. The shortedt electrical path is the path which results in the

shortest propagation time between the two points. Furthermore, these rays are

orthogonal to surfaces of constant phase. If the media is also homogeneous, which

is true in this case, the ray paths are straight lines. Assuming the field is known at

some constant phase reference surface, it can be calculated at any point away from

caustics using conservation of energy. Referring to Figure 3, if the field is known

at some constant phase surface dA0 along with the principle radii of curvature, pi

and p2, of the surface dAO then the field at dA may be calculated using the conser-

vation of energy and the above assumption that the electromagnetic energy travels

in straight lines. Since the energ; flux at both of the surfaces is proportional to

the square of the field, it follows from the conservation of energy that

mI(o)J' dAo = t(,t)l2 dA. (2.1)

From geometric considerations it can be shown that

dA =(p 1 + 1)(P2 + ') (2.2)
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Combining these two equations gives

E' E' P- 0 (2.3)
-) I(O)I (P1 + t)(2 + t)(

* where it is assumed that the positive I direction is in the direction of propagation

and the principle radii of curvature Pl and P2 may be both positive (concave wave

front), both negative (convex wave front), or opposite in sign (saddle wave front).

The complete expression for the field, one that includes the phase as well as the

magnitude of the field, must be obtained from the asymptotic solhtion of Maxwell's

equations and is given I,-

-=A() (Pi tP2 + ,-3(kI-mj) (2.4)
iey - (0) (PI + O(2+ 1)

where m is the numb-,r of caustics the ray passes through going from 0 to i. For

example, m=O for points to the right of the caustic labeled 3-4 as shown in Figure 3,

m=1 for points between 1-2 and 3-4, and m=? for points to the left of 1-2. It has

been assumed that the wave is traveling fiom left to right so I is positive to the

right of 0 and negative to the left of 0. GO obviuusly fails at the caustics where

it predicts that the field becomes infinite.

Only two special cases are of interest here. Letting P1,P2 -" oo and replacing

t with s gives: E(.) E(O)e-Jk" which is the well known result for a plane wave

propagating in the positive s direction where E(O) is the field at any convenient

constant phase plane, and s is the distance from the reference plane to the point

of interest. The spherical wave is the second case of interest here. In this case,

P1 = P2 = P giving

As) = E(m) I e4(kami) (2.5)

!etting the reference point approach the caustic and assuming pE(G) --# As as

13
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'-,,Region I

Nbb

Region II - -

-.0001.1 Region III

Figure 4: Projection of rays on to b-n plane.

p -40 gives
() -9A (2.6)

which is the familias .pherical wave rtsult. Notice that m=O in both cases since

no caustics are crossed.

2.3 Geometrical Theory of Diffraction

If Fermat's principle is extended to include refraction, reflection, and diffrac-

tion points then GO may be extended to media with discontinuities in electrical

characteristics. This means that not only is the field from the direct or line-of-

sight path included, but also paths which include points on the surface where the

media is discontinuous. In this case the discontinuity is a wedge with perfectly

conducting flat faces. The edge-fixed coordinate system described earlier is used.

The projection of the rays onto the b-n plane is shown in Figure 4. For a fixed

source, the observation point may be in one of three regions around the wedge. In

&*ion 1 (0 < < w - %'), all three rays contribute to the total field. In region

II (ir - •' < < r + 0%), only the direct and diffracted fields contribute to the

14



OBSERVATION
POINT

0m0

SOURCE POINT

Figure 5: Keller's cone of diffracted rays.

total field since no point on the wedge satisfies the law of reflection. In region III

(w + 0! < 0 < nw), only the diffracted field contributes to the total field. No-

tice that, in general, the reflected field is discontinuous at the reflection shadow

boundary (+ 0' = r), and the direct &HAA is discontinuous at the incident shadow

boundary (4b - 0! = r). Keller 110] derived an expression for the diffracted field

in terms of the field incident on the edge and showed that the major contribution

cones from a %ingle point (the diffraction point). The condition / = #' is met at

the diffraction point. The cone of rays that satisfy this condition for a given point

aloI• - :.e edge is known as the Kelle. cone (see Figure 5). Keller's results for the

diffracted field were only for observation poiuts away from the bhadow boundaries.
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Kouyoumjian and Pathak [31 later formulated the Uniform Geometrical Theory of

Diffraction (UTD) which extended the solution to all regions of space. The results,

in terms of the edge fixed coordinates shown earlier in Figure 1, for a plane wave

incident from the direction (fr,4b') and a far field observation direction at (f#,0) are

given by

I -- ][= D h o (2.7)

where

{ cot( (, + (+ + cco (r + +

C- 2n 2n

Qe is the point on the wedge which satisfies the condition P -', EN,(Qe) is

the component of the incident field in the 4' direction at Qe and E0,(Qe) is the

component of the incident field in the ý' direction at Qe (see Figure 5). The

diffracted field is described in terms of transverse components, 0 and 4, at a far

zone distance s. The first and third cotangent terms have been associated with

the O-face incident and reflection boundaries, respectively. Similarly the second

and fourth cotangent terms are associated with the N-face incident and reflection

boundaries.

2.4 Physical Optics

Physical Optics is a widely used technique for finding the field scattered by a

perfectly conducting body of arbitrary shape. The physical optics approximation

to the surface current is given in [11] by:

. =I 2n- x Ai' ; in Lit regions
JP0 =(2.8)

0 ; in shadow regions
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Figure 6: PO Currents on an arbitrary scatterer.

where the illuminated and shadowed regions are determined using ray optics, and

H•P is the incident magnetic field on the surface of the perfectly conducting body

and is approximated by the GO incident field in this case. Since only far zone

sources are considered here the incident field will always be locally plane and the

rays will be parallel. A simple 2-D example illustrating the lit and shadowed

regions is given in Figure 6.

The scattered field is found using the far zone radiation integral which is

defined by

(=kZ04w e-J' J f(aD)ekh'1'dS' . (2.9)

Plugging in the PO approximation to the surface current gives:

S.(a) =hZo-4w a S, 2fi x ()ejh'i-dS' (2.10)
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where S' is the illuminated region on the scattering surface and s,S, and rt are

defined in Figure 6.

2.5 Physical Theory of Diffraction

The Physical Theory of Diffraction was first widely used for scattering prob-

lems by Ufimtsev (4]. Additional currents are added to the Physical Optics currents

so that the solution is valid for larger regions of space and for smaller scatter-

ers than is possible with either GO or PO. Letting the total surface current be

J = JPO + J1 where Jf is the correction to the PO current which when added to

"the PO current would approximate the actual current on the scatterer. Since the

PO current is derived from the assumption that the surface may be locally approx-

imated as an infinite plane tangent to the surface, it is expected that Jf could bc

described as the current due to the deviation of the surface from an infinite plane.

The sharp edge or wedge is the only deviation from a planar surface considered

here. Ufimtsev speculated that this correction to the PO current would only be

important near the edges of the scatterer in this case.

Assuming plane wave incidence, the magnitude of the PO component of the

current is constant on the illuminated region of a planar scatterer so Ufimtsev

named this the uniform component of the current. The magnitude of the cor-

rection current is obviously not constant on the surface and is thus called the

nonuniform component of the current. In the case of a wedge, Ufimtsev refers to

the field radiated by the nonuniform part of the current as an elementary edge

wave or simply an edge wave since it is produced by the nonuniform part of the

current which is concentrated along the edge and rapidly decreases away from the

edge. In his latest paper [12], however, it seems as though he refers to the scattered

field as the total edge wave and the field due to the correction current, ifI on an
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infinitesimal strip of the wedge as the elementary edge wave. In this case the only

contribution to the nonuniform current Jf is due to the edge discontinuities. If

the edges are long in terms of the wavelength and have radii of curvature which

are also long in terms of the wavelength the total current may be approximated

by the current on an infinite wedge tangent to the scatterer at the point of inter-

est. The nonuniform component of the current may then be found by subtracting

the GO current from this approximation to the total current. Ufimtsev calls the

approximation to the nonuniform current given by the infinite wedge the fringe

current, and the field produced by this current the fringing field. Ufintsev never

actually found the fringe current, instead he found the fringing field by indirect

considerations. In recent years both Michaeli [13,14] and Ufimtsev [12,15] have de-

rived expressions for the fringing field involving expressions for the fringe current

on the wedge. Michaeli's expressions for the fringe current will be used in the later

development of the corner diffraction coefficient.

2.6 Method of Equivalent Currents

The method of equivalent currents was originally used by Millar in [16] - [18].

Ryan and Peters [1] used the method of equivalent currents to find the diffracted

field in the region of caustics of the UTD diffracted field. Ryan and Peters equiva-

lent currents have been used to find the original comer diffraction solution shown

in the next section. Ryan and Peters equivalent currents are discussed here since

they may be used to illustrate some important points about the use of equiva-

lent currents in general. A brief description of the methods of finding the new

equivalent currents used in the corner diffraction coefficient will be given.

Ryan and Peters compared the asymptotic approximation to the far zone

diffracted fields from an infinite wedge illuminated by a plane wave to the expres-
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sions for the far zone fields radiated by infinite magnetic and electric line sources.

Equating the two fields, they obtained expressions for the equivalent edge currents

which depend on the direction of incidence and the direction of observation. The

field scattered by an arbitrary three-dimensional body made up of smoothly curved

faces terminated in sharp edges is found by numerically evaluating the usual radi-

ation integral along the edges of the scatterer using the equivalent currents. These

equivalent edge currents are obviously not physical currents since they are func-

tions of the observation point. They are a means of mathematically simplifying

the problem of finding the diffracted field.

It was shown later by Northrop 1191 and Sikta, et al. [21 that if the surfaces

were represented by very thin strips oriented in the proper direction, the solution

was more accurate for three-dimensional problems. The strips are oriented in a

direction such that the angle between the vector tangent to the edge (i) and the

strip is given by

tan Os-tan #1 cos' O1 < , ! i (2.11)

as shown in Figure 7. This orients the strips so that the incident ray is normal to

the infinitesimal edge on each strip.

Later, it was found by Marhefka [201 that for the case of bistatic scatter-

ing changing the orientation of the strips, in general improved the results. The

modification used is simply to replace e', given in (2] by:

e* j)( a-) x?~ fil- J (2.12)

where i is the diffraction direction, is the incident ray direction, f& is the normal

to the face, and ip is the edge vector. This expression reduces to the expression for

4, given in (2] for the special case of backscatter. This replacement is equivalent
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Figure 7: Strips used in Ryan and Peters Equivalent Currents by Sikta [2].
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to placing the strips such that:

"tl icos - cos 5
""cotOss - Cos# ncos 0 <_ s < ir (2.13)

where 08 is measured as illustrated in Figure 7. It is interesting to note that this

is the strip orientation associated with the PO surface integral (see Section 4.7).

As a result of the two-dimensional nature of the solution and the orientation of

the strips, the scattered field predicted by the equivalent currents is singular at the

so-called false shadow boundaries. The false shadow boundaries are the regions

of space where the two-dimensional problem goes through a shadow boundary

(4) ± 4' =r), but the three-dimensional problem does not (P • p3). The major

reason for this problem is the two-dimensional nature of the solution. A simple

example is given next illustrating this property.

T'he bistatic scattering from a flat plate two wavelengths on a side is calculated

using the equivalent currents given in [2] with the replacement of i* as described

above. A fixed source is placed at 0' = 450 and 0' = 0' as shown in Figure 8.

The pattern is taken in the 0 = 600 plane and the results are illustrated for the

entire scattering matrix. The results using the previous equivalent currents are

compared with Method of Moments results in Figures 9 to 12 for the four different

combinations of incident field and diffracted field polarizations. In all four cases,

the previous equivalent current solution is singular at the false shadow boundaries

(9 z-, 240' and 0 : 300* in this case). The spikes are due to singularities in

the contributions from both the front and back edges which have false shadow

boundaries at both 0 s 240" and 0 - 300*.

The idea of using infinitesimal strips to represent a flat face is used again in

deriving the new equivalent currents; however, the strips are oriented in a different

direction in finding the new equivalent currents. A different approach is used to
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Figure 8: False Shadow Boundary example geometry (2A square plate in the x-y
plane).
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Ryan/Peters Equiv. currents-- Moment Method

•.A
._.. ..""9 C.9*

0 60 120 180 240 3OO 360
! 0 (deg.)

Figure 9: Co-polarized RCS in the =60* p~ane of a 2A square plate with a 8
-- polarized fixed source at 0' 45', • =00.

Monwat Method

e .. 9 . * .~.9 . . . . . . . .

: . ... . ... ...

0 60 120 240 300 60
0 (deg.)

Figure 10: Co-polarized RCS in the 4 = 60' plane of a 2A square plate with a 6'polarized fixed source at 0' = 450, 4,' 00.
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' 'Rya/Peters Equiv. Curreuta SMoment Method :

........................................................ ... .................

".. .. . . ...

r \.1• , ý,- 0

0 b20 W 240 300 360

0 (deg.)

Figure 11: Cross-polarized RCS in the 0 = 600 plane of a 2A square plate with a
ji polarized fixed source at 0• - 450, 4i = 00.

[_-- _Ryan/Peter9 Equiv. Current..

*- Moment Method I

Figur 12 Crwplaie RC..te"0 ln fa Asur paewt

Sf, 0 .

2 ,. •

0 60 UO U5o 240 30o3

0 (deg.)
SFigure 12: Cross-polarized ROS in the • = 600 plane of a 2)• square plate with a

•' polarized fixed source at U' = 45°, 4? = 00.
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find the new equivalent edge currents, and different expressions are obtained. The

scattered field is found from the new equivalent edge currents in the same way as it

is found from Ryan and Peters previous expressions. The new equivalent currents,

however, predict smooth fields at the false shadow boundaries. This is illustrated in

Section 5.3.7 where the above example is repeated for the new equivalent currents.

2.7 Previous Corner Diffraction Coefficient

A diffraction coefficient for a com-,r formed by the intersection of two straight

edges was derived by Burnside and Pathak (2]. It is based on the asymptotic

evaluation of the radiation integral containing the equivalent currents of Ryan

and Peters (11 The result was then empirically modified so that the diffraction

coefficient would not change sign abruptly as it passes through the false shadow

boundaries. It was derived for spherical wave incidence and remains valid for cases

when the Miffraction point is near the corner since the integral was evaluated for

a saddle point near an end point; however, only the far zone result is shown here.

The corner diffracted field duc to one corner and one edge in the cue of plane

wave incidence and a far zone receiver is given by

S, (2.14)[ 1 CV (Qc) 1' v0o sinj oc e-d0

D . [C(Q) (c,•osoc+cosfo)Vw (2.15)

-O' (.hQ.) 2nV-- w sin•.• {[Dc(- 0) + DcO - Oý]
[D,= 0R') +~fi {Dc( + ')]+~~-)

Dn(() =Don() IF ['2wa (toc+ o)
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~~(2nwrNF - b\a() Cos~i) &() 2 cos2 2
2 2

where NF is the integer which most nearly satisfies 2nr'N"F - = -ir, and

D o , n( l) = c o t [ 7r j]

2

F(w) = 2jIv X 'i &o 2 J'r (2.16)I

where the angles are shown in Figure 13. The sign on the diffraction coefficient

may be plus or minus depending on which endpoint of the edge is being considered.

Choosing the correct sign is discussed in Section 3.5.

The heuristic factor added to the corner diffraction coefficients changes the

behavior of the solution at the false shadow boundaries, as illustrated in the next

example. The bistatic scattering et•ample from Section 2.6 (2A square plate, source

fixed at 09 = 450 and ' 0= , and • 600 pattern) is repeated here using the

corner diffraction coefficients. The results for the four different combinations of

incident and diffracted polarizations are shown in Figures 14 to 17. As the figures

show, the previous corner diffraction solution is discontinuous at the false shadow

boundalies (6 - 2400 and 0 ; 300') of the front and back edges.

2.8 Stationary Phase Method

The stationary phase method is a widely used method for asymptotically

evaluating a certain class of integrals described below. The results are stated.

Further informatior on the stationary phase method and asymptotic series is giver.

in [211 for thn following

1(0) = Jb F( a.)e•r (2.17)

• .i 9a
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Rguire 13: Nflefition of angles for the; Corner Diffraction Coefficients.
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Previous Cotner Diffraction
Moment Method

12-

IB 7

0 60 120 180 240 300 360

0 (deg.)
Figure 14: Co-polarized RCS in the • = 600 plane of a 2A square plate with a 0'

polarized fixed source at 0' = 450, i = 00.

-Previous Corner Diffraction
Mor•z:; Method

"I •

0 1-3 V20 3.0 240 300 360
0 (deg.)

Figure 15: Co-polaxized RCS in the 0 = 600 plane of a 2A square plate with a
polarized fixed source at 0' = 450, 4 = 00.
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Previous Corner Diffraction"I
Moment Method
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Figure 16: Cross-polarized RCS in the 4 600 plane of a 2A square plate with a

a' polarized fixed source at 0= 45', 4•bt 00.

I-- Previous Corner Diffrartiont

I-- Momrent Method
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V* ,.. .

• -........... ... .

, . . *. :

0 60 120 ISO 240 300 360
0 (deg.)

Figure 1: Crons-polarized RCS in the 4, 600 plane of a 2A square plate with a
0' polarised fixed source at 09 = 45%, 0,' = 00.
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where x is a real variable; x is real, positive and large; O(Z) is a real, continuous

function with continuous derivatives for a < z < b; 0'(zs) = O,for a < to < b and

z, is not close to a or b. Note that F(x) is a complex function which is slowly

* varying and well-behaved on [a,bj then I(K) is asymptotically approximated by

• 1(,K) ~ 2. "•(•a)+j1g"(6"(:a))]

+ -- _Fea) (2.18)
9 0(b) ,.,' (a)

The first term is the contribution from the stationary point while the second and

third terms are the contributions from the end points b and a, respectively. If

there is no stationary point in the interval [a,b] and there are not any stationary

points xs near the end points a and b, the integral is asymptotically equal to the

sum of the end point such that

I ) (a de(o(a)-ij + o (KI)CA (2.19)
r., (b) ' (a)

This result will be used to reduce the equivalent edge currents to corner diffraction

coefficients. It is also easily seen that the terms of order 1/m in the stationary

phase approximation give the exact integral in the special case where F(r) is a

constant, such that F(a) = F(b) = F. Then, O(z) = cz such that 0'(z) = c

which is a constant. This obviously indicates that no stationary points are in the

interval or near the end points. Plugging into the above equation and retaining

only terms of order 1/x, one obtains that

1(K) ~ Fj[•jjxbc - __j[KCJ] (2.20)
KC KC

IF F - ,- (2.21)
1JC K cjc
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which is the same as the result one obtains by integrating the following expression

-I(K) -" Fejs zd=. (2.22)
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CHAPTER III

THEORY

3.1 Introduction

This chapter outlines the derivation of the new equivient currents for finding

the far zone scattered fields from a perfectly conduciing wedge illuminated by

a plane wave. This is a combination of the work done by Michaeli (13,14] and

Buyukdura [22]. The contribution from a single face of the wiedge is written in the

form of an equivalent edge current. The equivalený currents are then reduced to

corner diffraction coefficients. Then the comer diffraction coefficients are written

in a form that is consistent with previous forms for diffraction coefficients.

3.2 Physical Optics Surface Integral

Gordon [23] showed that the far zone radiation integral over the PO currents

for a plane wave incident on a flat plate iuay be converted from a surface integral to

a line integral around the edge of the scatterer. Later Buyukdura [22] arrived at the

same result using a different methoa. The steps he used to find the PO equivalent

edge currents are repeated hei .. The PO equivalent edge current is found for a

plate with the O-fa, a illuminated. The results may be easily used for a general

wedge since the FP contribution from each illuminated face may be calculated

separately and s trined to give the total PO contribution. If a face of the wedge

is not illuminated then that face makes no contribution to the scattered field and
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does not interact with the other face of the wedge in the PO approximation. Using

the edge fixed coordinates given in Figure 1 and choosing the normal direction so

that qV _• 7r it is assumed that the contribution from the O-face to the far zone

scattered field may be written as

jjkZo e-jkR (3.1)-------- ; x jR,(tOeJk he(t)d

47r R

where c is the curve along the edge or edges of the scatterer and K(t) is an unknown

function of the source and observation directions which is to be found. The field

produced by electric and magnetic line currents placed along the edge are given by

47 R c [z_ S x× S 1 + i x i M]e kcejkzzdt (3.2)

where
k. = ki ., kz = ki ',. (3.3)

Equating this result with Equation (3.1) one finds that

I = Kt - Kbcotflcoso (3.4)

and

M = -KbZO snA (3.5)
sinI(35

where

KR(t) = iKt + bKb (3.6)

Placing the PO currents in the radiation integral over the surface of the plate gives

a XSZ4 -iXRR f f.(2h x 1.)ej( ' .)ij(kx-hs)zdz (3.7)
4w R jj(n H6)ik)e(z~)dd

where

P (zz)= 2fi x &'(z,0, z) (3.8)
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14 = ki'.&, 14ki' .2l- (3.10)

and fi is the GO incident field. Using the following vector identity

,-) . v x f 1- ) - (k2, - 4)i1 e

(3.11)

with
h2=(kr _ ki)2 + (kz _ ki)2

h2  k 2  (3.12)

gives

-jkzo e-kR l f.-a" X axx I (2fi x flý)P . V x
4w R aJJ&XL flV

f k- - (k, - Jk dxdz. (3.13)

Then applying Stokes' theorem, one obtains that

Es= 4 R SSx xj(2ix2h2 dz (3.14)

where the line integral is around the edge of the plate. Comparing this integral

with the integral in Equation (3.1) results in the following:

= --Hinsinfcoso+ in'coso (3.15)-- Kt = j b h2 (.5

Kb = - 2 ificoso±hiflcoso (3.16)

where

H +il +!A (3.17)

using

35 . x' (3.1)
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gives

-Hýin' + H CotIs '(3.19)
ZO sin/?O

Using Equations (3.15), (3.16), and (3.19) in Equations (3.4) and (3.5) gives

M 2 Z0 _sino U("-4-')sin;6cos04,sinfl'cosO'M t -• tshisn6 [(cos Cos) 2  (sinCos, + sinf• ' cos ,)2 (3.20)

and

I = U(W-4/)

2 !Y( Y,'sin ' sin P cos ± + sin #'cos4, 7

I-jk tCsin #I [(cog # - cog #,) 2 + (sin/P3cos#0+ sin #'Cos 0)23

+ 2 H;,(in 0 cos 0+ uin f' cos ')(cot P cog 0 + cot 0' coso, ) (3.21)

jAk ( c#-Cos pV) 2 + (sinfl Cos 0 + sin #I Cos 01)2  j (.

where the unit step function U(w" - 0') has been included to stress the fact that

the equivalent currents are zero if the face is not illuminated by the incident field.

Letting

SLe-in= sinflcos + (cosg - cog #,)2
sin,0 sin 3'(sin P cos 4 + sing' cos )(3.22)

results in

_ 
2 ZOH- sin4 U(7'-

M jk H; sin # sin#6' (cos7 + cos 07) (3.23)

2YO isine' U(wr -4"ý)
I = k Et t5 12 (Cos Y + Cos 9V)

2 H U(w - 01) (cot 0coso + cot/ ?cosg)+ H Yt o + Cos 0 (3.24)

Since the above equivalent currents (referred to later as the LPO component of the

equivalent currents since they result from the reduction of the PO surface to a line

integral) were derived from a surface integral over a finite surface and integrand,
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it might be expected that they would remain finite for all aspects of incidence

and observation. -Even though the currents themselves become infinite for certain

directions of incidence and observation, the fields radiated by the currents remain

finite, as explained below. The magnetic current becomes infinite as sin#3 -+ 0.

This is not a problem however, since it will always be cancelled by a factor of sin/3

in the radiation integral due to the S x i term. It appears that the electric current

becomes infinite for edge on incidence (sin#' = 0), but the current remains finite

"here since the factor of sin 0' in the denominator is cancelled by a factor of sin #' in

Et. Both of the currents become infinite at the GTD shadow boundaries (Pi = [3

and 4, ±4- = ±7r). This is onily an artifact of the conversion of the surface integral

to the line integral. When the complete integration is done vound the edges of a

finite scatterer, the infinite contibutions from the different edge. combine to yield

a finite result. This is illustrated analytically for the special case of backscatter

at broadside of a rectangular flat plate in Section 4.5 and in other cases by many

numerical examples in Chapter V.

3.3 Fringe Equivalent Currents

Many people have worked on the problem of finding equivalent edge cur-

rents for a perfectly conducting wedge that are valid away from the Keller cone.

Mitzner [24] derived Incremental Length Diffraction Coefficients (ILDC) using

some symmetry arguments. Knott [25] later showed that Mitzner's ILDC could

be written as equivalent edge currents. Micha.li (13] later derived equivalent edge

currents for the wedge problem using a more mathematically rigorous method.

Knott (25] also showed that Mitzner's ILDC and Michaeli's equivalent edge cur-

rents are the same except that Mitzner's ILDC give expressions for the fringe field

only, while Michaeli's equivalent edge currents are for the total field. In this first
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attempt at the equivalent currents, the plate is modeled as a series of infinitesimal

strips oriented normal to the edge (i.e. the strips are parallel to the b direction).

In a later paper Michaeli [14] points out many singularities in the original ex-

pressions for the equivalent fringe currents and derives new expressions which have

fewer singularities. This is accomplished by changing the direction of asymptotic

evaluation of the integral from normal to the edge to a direction skewed from the

edge normal. Not only does the new orientation of the strips reduce the number of

singularities in the fringe equivalent currents, it is, as will be explained later, also

more consistent with the physics of the problem. The original expressions for the

equivalent fringe currents had mwny singularities. Michaeli points out that there

are so many singularities that it is probably impossible to remove all of them. Gc-.

ing back to the radiation integral over one face of the wedge he points out the cause

of two of the singularities. The equivalent fringe currents become infinite when

.S = A' . where S is the observation direction, S' is the incident ray direction, and

b is the edge fixed coordinate direction defined previously in Figure 1. The current

becomes infinite here because the phase of the PO component of the surface cur-

rent cancels the phase of the outgoing wave. The fringe equivalent currents also

become infinite when S. b where t' =cosB' + bsinO'. The fringe currents

are infinite here because the phase of the UTD surfrcc current cancels the phase of

the outgoing wave. The cone of rays where the equivalent currents become iiffinite

(S. = b . b) in the second case may be reduced to a single direction by a change

of variables. This is included in the summary below. A summary of the procedure

Michaeli 1141 used to derive the fringe equivalent edge currente is given below:

1. The wedge is replaced at each point along its edge by an infinite tst.t:o.

wedge with flat faces.
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2. The currents on one face of the infinite wedge are expressed as a spectral

integral using the solution to the two-dimensional infinite wedge problem.

3. The field due to these currents is expressed as a triple integral (one over the

spectrum and a double integral over the surface of the tangent wedge).

4. The order of integration is changed. The integration over the spectrum and

the integration over one of the spatial variables (b) are interchanged.

5. The integral over b is replaced by an integration along the & direction (see

Figure 18), and the integration variable b is replaced by c sin f' in the inte-

gral.

6. The asymptotic end point contribution from the integral over the first spatial

coordinate, a, is determined.

7. The integration over the spectrum is done, after the path has been distorted,

using the method of steepest descent. The contributions from the poles (PO

contribution) ae removed leaving the fringe contribution only.

8. The remaining integral is an integration along the edge of the wedge.

9, The radiation integrel for electric and magnetic line sources along the edge

is ccompared to the integral remaining in 8 and the equivalent edge currents

are identified as:

Mf = MUTD -MPO (325)

If = IUTD - IO (3.26)
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where:

MUTD 2jZsino (lrn)sin[(ir-a)InlcscaH t
k sin rsinf cos-[(T - •7)/n] - 4os(!) (3.27)

:1 UTD 2j 1/n f sin (4I/n)
ksin/3' cc5(01/n) - cos[(7r --a)/nJ I Zsin3'E

sin -J+ si- csact o o )t

"2j cot/f' -i
in -sir••i (3.28)

_-- -2jZ sin OU(r - 9')-Hz (3.29)
ksinflsin i(coso9 + cosa) t

ip - 2jU(7r - 0') Eti
k sir. ,'(cos- 1 + cos a) IZ sin,, O

- (cot 0' cos.' i 4cotfcos )HtJ (3.30)

a = Cos- -=-iln( +V4 TT ) (3.31)

= sin Pocos4+ (Cos ? - costl')cos 0' (3.32)
sin,8' + sin 2 P'

and the branch cut chosen is assumed to be the same as previously obtained by

Michaeli [13]

= V/ - 1= j -ti2 --I < <.1, (3.33)

Although Michaeli does not specify the branch for the In z in Equation (3.31),

it seems reasonable to take the principal branch of the n&.tural log. Specifically

In z = In Izi +jag(z) where 0 _ arg(z) 7r. From the equations for the equivalent

currents, it is obvious that the arg(z) may also be taken between r and 2r, since

the equations remain unchanged if a is replaced by 21 - a. An equivalent method

of finding a is to choose the branch of cos- 1  so that a is continuous for A = ±1

and the two branches are chosen to run from a = r to a = x- jev and a = 0
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to a = 0 - joo respectively, as shown in Figure 19. Notice that the last term on

the right hand side of the expression for IUTD in Equation (3.28) will be dropped

since it will be cancelled by a term of opposite sign due to the other face. Since

each edge is made up of two faces and the term does not depend on which face

is being illumiinted this term will always be cancelled by the corresponding term

from the other face for a perfectly conducting wedge.

The only difference between the procedure Michaeli used to find these equiva-

lent currents and the procedure he used to find his previous equivalent currents (131

is in step 5 listed previously. This change in variables not only results in fewer

ringularities in the equivalent currents, but also makes more sense physically as

Ufimtsev points out in (12]. The field on one of the plates of the ihtfinite tangent

wedge should only depend on the contribution from the strip on which the field

point is lyirig. The only strip orientation which meets thia condition is the orienta-

tion described step 5, where. the first spatial integration ;s taken in the & direction.
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In this case, all points along the strip lie on the Keller cone so that when the line

integral along the edge is evaluated the major contribution to any field point on

the strip will be due to the strip itself. All other directions of integration result in

equivalent currents which "contatinate" the field along their strips with contri-

butions from the other strips. The singularities remaining in the new equivalent

fringe currents are listed below:

1. The currents become infinite when the direction of observation is the same

as the direction of a glancing incident ray, that is the forward scattering

direction in the plane of the plate where /P = f' ,0 = 0 , and 0' = 7r.

Michaeli refers to this as the Ufimtsev singularity.

2. If and Mf do not tend to a definite limit, but remain bounded as i -- a.

3. Both If and Mf approach finite limits for edge on incidence ('0' -* 0 or

S-1 -- ), except of course when i = S' which corresponds to the Ufimtsev

singularity described in item 1.

4. Both If and Mf are discontinuous for 01 = 7r.

5. If and Mf are finite for S.& = - .8& or a±40 = 7r, although the components

of the currents become infinite here.

Michaeli points out that all of these singularities except for the first one are in.

tegrable so the fringe fields found using these currents are finite for all aspects

of incidence and observation except in a single forward scatter direction. Since

the Ufimtsev siugularity is in the forward scattering direction, it will probably not

cause any trouble in solutions of practical importance. These singularities may

cause spikes and discontinuities in the pattern when the equivalent currents are

used as the bae for the new eorner diffraction coefficient. This behavior will be

illustrated in Chapter IV.
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3.4 Equivalent Currents Written in the Form of Diffraction Coeffi-
cients

The equivalent edge currents may be written in a diffraction coefficient form

closer to that used by Kouyoumjian and Pathak [3]. Using the following trigono-

metric identities:

1 =1 1 i~ot(r-(a--b)) _cot ______b

cosa+cosb = 4sinb cot 4 4

o [cot ( rW -))_r+ (4-(b) (33)]

-1- cot +r -(a-3)co.3 a )
osa+os b 2

+ [cot (7r-(a±b)) -cot (71.+ (a+b))] (3.35)
sina I cot (a - b) + t(a-+ b)](336

Cosa- Cos b- 2 1co 2Y c 2 (.6

sinb 1c (a- b) t (a+b)3
cosa - cob 2 [cot -co 2 (3.37)

and a little algebra, one obtains the equivalent edge currents (0-face contribution

only) given by

M = MLPO + MUTD - MPO (3.38)

I = Ie + IM (3.39)

Ie 1M = LPO + 1UTD _ 1PO (3.40)" -"m c,•r ejw •m•1

where:

IPOM %PO Ch(.V),C2(-s'rr O - 0 - f +)
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{[cot (r cot 7 +

ot r- (Y + cot7r+') _ +ot
4 4

MUTDjITD 1 Ch(ab),C2(a,,w-a) 1[ UTD j CS
[cot 7' - (CI - Cot2, 7r°•( - (Cx + 0)11,

MPO,IPO MLPO,ILPOI- I (with - replaced by a) (3.41)J•eo JCPO

Gh(6) sinCn j E • 1 (3.42)
Yoksinflsinfl'sin6 si#1 (.2

C2(6 ) = jHt cotO cos 0 + cot 0' cose ()_ C2(6 e) = k sin 6 sinf P343

C -f = sin 3cos + (cos3- coosp') 2  (3.44)
sin•#1 sin#I(sin9cosO+sin•'cose4)

co- sin 0 cos i (cos 0 - cos #) cos (3.45)

sin •I sin2 p,

U' 1'< (3,46)

The branch of coo-' is described in Section 3.3. For the special case of a fiat plate

(n=2), it is much easier to consider the contribution from each edge due to both

faces than to consider the contribution from the edge due to each face separately.

For the case of a flat plate the total contribution from each edge is given by (note:

the normal may be taken in either direction perpendicular to the plane of the

plate.):

Al = MLPO + MUTD - MPO (3.47)

1 = 1e + IM (3.48)
eLPO +UTD (PO3

-M e' m - em (1, e49)
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where:

MLPO,4•PO 1 [ Ch('),C2(7t•')

d cot (T - - cot (7r± (+ ')]

(•P - (- 4s 4

[cot _7r J + ,) _cot +(7 r + + '
± ot 4 4

MUTD•,ImTD Ch(a), C2(a,7r - a)
'eZ J CS

[ MPOTD J - , . j

M PO I 1P LPO)MP[ eO MsJ = JAPO (with - replaced by, a)

Si = { 7 r -:0?<:0(3.50)' 1 ,z-4'0 > 0

where Ch, C2, Cs, 7, and a are the same as the expressions given earlier in Equa-

tions (3.42) to (3.45). The terms may be associated with the 0-face incident

and reflection shadow boundaries and the N-face incident and reflection shadow

boundaries, as indicated previously for the UTD diffraction coefficients.

3.5 New Corner Diffraction Coefficient

Buyukdura [22] has derived the corner diffraction coefficients from the equiv-

alent currents using the stationaýy phase approximation. If the object is made

up of flat faces with straight edges then all of the edges are terminated in sharp

vertices. It is assumed that the current near each edge, even very near the vertex,

is unperturbed by the other edge making up the vertex. The same assumption
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was made in the derivation of the previous corner diffraction coefficient given in

Section 2.7. Despite this shortcoming the corner diffraction solution gives fairly

accurate results (see the next chapter for numerical results). Since it is assumed

that the two edges forming the vertex do not interact near the vertex (to first

order) the scattered field may be expressed as a line integral along the edges of the

object. The line integral along the edges may obviously be expressed as the sum

of integrals along each individual edge such that
= k -jkR b in[ZO X SX XiM] e-j(kbb+k't)d. (3.51)

where the first sum is over the faces of the object, the second sum is over the edges

of each face, and the edge fixed coordinates 1 and b along with the limits on the

integrals obviously depend on which face and edge are being considered. Looking

only at the contri',ation due to one face and one edge at a time, one finds that

E" iR n k"' [Z0 S x S x i MI e-A(hE+kzz)dz (3.52)

4w~ R JGn

where the coordinates are defined in Figure 20. Notice that along the straight edge

the edge fixed coordinate directions (&, fi, i), and the angular directions (f3,•', I,4)

are constant. The only factors in the equivalent currents which vary along the

edge, therefore, are Ej and Ht. To simplify the integration, these factors will be

separated out using the following definitions:
= 2jYoCieEi 2jGirntli (3.53)

I = ksin # sin ' + ksin sinP(5'
M 2j ZoGmH (354

M = k sin #sin #' (3.54)

From which it is easily seen that Gi, Gim, and Gm are all constant along the

straight edge. Taking the phase reference at some arbitrary point 0 along the

t-axis and using:

Fg(z) = E(0)ehcO'(3.55)
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Figure 20: Edge Fixed coordinates for a straight edge.
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Ht (z) = Ht(O)e-kC° (3.56)

=0 (3.57)

_kz = kcosf/' (3.58)

gives

1s e-AR ~b rFGieE(O) GjmZoHj'(O)1le-J•R/b{•~~~ x S x G [aeEI()+GrZH(-)

27-r a -R L I sinfainf sinpsinfl' J
+ sxi ZOGmH1(0)lekz(cOa,-casf3)dz (3.59)

siun9sinfl' I

Since the term in brackets is constant, using either the method of stationary phase

or regular integration (see Chapter II) and only including the contribution from

the end point at b along with the following relations:

=E= E sinI' (3.60)

• 1

Ht =-oEý, -in P' (3.61)

S x -ýBin/ (3.62)

S x i x i sin/3 (3.63)

results in the following expresions for the new diffraction coefficients in terms of

the new equivalent currents:
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8 (3.64)
E 0 Dc

D + Ie/ Yo Et
Dc - + I - 1 sin sin ('

h 4w cos -cos M/3
Dc+ Im / Ht'

where Ep and E; are the / and ý components of the corner diffraction contribution

from one corner, one edge, and one face. The phase is referenced to the corner.

and Vj are the P' and components of the incident field at the corner.

The angles are the edge fixed angles with the origin located at the corner as

"illustrated in Figure 21. The equivalent currents Ie, In, and M are given by

Equations (3.41) and (3.39), respectively, or by Equations (3.49) and (3.47) for

the case of a fiat plate. The sign used depends on which end point the particular

contribution is coming from and the direction of integration. The direction of

integration is always chosen to be in the counterclockwise direction when the face

is viewed from the positive n-direction. The negative sign is used for the first

corner contribution of each corner (as the direction of integration is traced out)

and the positive sign is used for the second comer contribution of the edge as

indicated in Figure 22. Equations for the corner diffraction coefficients with the

expressions given in Equations (3.41) and (3.39) substituted into Equation (3.65)

are given in Appendix A.

3.6 Conclusion

"Expressions for new equivalent currents based on the PTD are given in Equa-

tions (3.39) and (3.41). The new equivalent currents are used to derive a new

corner diffraction coefficient. Both the new equivalent currents and the new cor-
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Figure 22: Direction of Integration for one face.

ner diffraction give the same results for the first order scattering from a convex

body made up of perfectly conducting flat plates. Even though the equivalent cur-

rents are not valid in the region of a vertex (corner), it will be shown in Chapter V

that the equivalent currents (and the corner diffraction coefficients) give reason-

able results for many directions of incidence and observation. Several important

properties of this solution are discussed in Chapter IV followed by several examples

in Chapter V.
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CHAPTER IV

PROPERTIES OF THE NEW CORNER DIFFRACTION

SOLUTION

4.1 Introduction

The behavior of the new corner diffraction coefficient will be discussed for

various situations. The significance of its various properties will be outlined to

give insight into how the solution may be expected to behave in certain special

cases. Several more examples given in Chapter V illustrate that the solution agrees

closely with either the Method of Moments or previous first order solutions in most

cases.

4.2 Singularities

First the singularities in the solution will be discussed. The singularities in the

new corner diffraction coefficients are simply the combination of the singularities in

the line PO component and in the fringe component of the new equivalent currents.

The singularities and some examples illustrating how they may effect a pattern are

given below.

1. Ufimtsev's singularity in the forward scattering dijrecion in the half plane

of the face (0 = j0' 0 = 0 , and Ob w). This singularity was previously

discussed in item I of Section 3.3. To illustrate how this may affect the

results, the bistatic RCS of a two wavelength square )late is calculated. In tbe
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Figure 23: Plate Geometry for the Illustration of Ufiimtsev's Singularity.

firut exanple the source remains fixed at 0i = 900 and #i' = 0* (see Figure 23)

while the pattern is taken in the 0 = 00 plane. The results for the H-plane

pattern in the x-z plane are shown compared with a Method of Moments

solution in Figure 24. This result shows that the new corner diffraction

solution is fairly accurate for directions greater than 15' to 20' away from

the forward direction for caes of grazing incidence. The prcvious coxtier

diffraction solution and equivalent current solution also become infinite in the

forward direction for grazing incidence. The pievious solutions are compared

with the new solution in Figure 25 for the 7-plase pattern and the geometry

given above. The new and old solutions are actually so close that they
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Figure 24: H-plane pattern for = = 00 cut of a 2A square plate with a fixedsom tOi 90", Oi 0•'.source at e,= --o~
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Figure 25: H-plane pattern for 0 = 0* cut of a 2A square plate with a fixed
source at 6i = 900, Oi = 00.
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Figure 26: H-plane pattern for • 450 cut of a 2A square plate with a fixed
source at ei = 90*, Oi = 45'.

are indistinguishable in the plot in Figure 25. To see how moving off the

Keller cone affects the behavior of the solution, the bistatic RCS of the two

wavelength plate is plotted for a pattern in the 0 = 450 plane while the source

is held fixed at Gi = 90 and Oi = 45W. The results for the H-plane pattern

are plotted along with Moment Method calculations in Figure 26. In this

example the new corner diffraction solution is fairly accurate in the major

lobe region away from the forward direction (6 = 900). The previous corner

diffraction solution and previous equivalent current solution are compared

with the new solution for this exarnple in Figure 27. Although the pattern

is taken away from the Keller cone, all three solutions are fairly close.

2. I1. (and Dc) and Mf (and Dh) do not tend to definite limits as i . , where

a isin#' + bcos#' and is shown in Figure 18, but they rtmain bounded.

In practice this means that both Dc and Dc, and therefore EP and E, are
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Figure 27: H-plane pattern for • = 450 cut of a 2A square plate with a fixed
source at Oi = 90', =i = 450.

discontinuous at this point in the pattern. A simple example illustrates how

this discontinuity can affect a pattern. The bistatic ROS from a flat plate,

two wavelengths on a side, in the x-y plane is considered. The source, linearly

polarized in the ýi direction, remains fixed at 0' = 450 and •' = 00 while

the pattern is taken near the x-y plane (8 = 890). The source geometry

is shown in Figure 28. The bistatic RCS is given in Figures 29 and 30 for

the co-polarized and cross polarized fields, respectively. The abrupt null at

St 135* in the co-polarized pattern and the spike at the same location in

the cross-polarized pattern are due to discontinuities in the contribution from

edge 4 (indicated in Figure 28). The point 4 . 135* coincides with 04 = 04I

and 04 •. 0 where P4, fl4, and 04 are the edge fixed coordinates for edge 4.

Due to the geometry 04 %' and $4 :- i so the discontinuity in a,0 is due to

the discontinuity in D' and, likewise, the discontinuity in ao is due to the

discontinuity in DX.

57



z

Figure 28: 2A square plate in the X-y Plane illuminated by a fixed sour~ce located
in the 0' 45W, 0S = 0* direction.
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-Corner Diffraction

- " Moment Method

S.. . .......... ....... ...... .

\ ..m. • . , . . . : . .. . : . . .. / . . . . .. . . .- .I .- - . . .. . . . :. . . . ..

.C4 , . . .... . .. . . . . . . . . . . . . . . . . . . . . .

0 3090 0 150 180

0 (deg.)
Figure 29: RCS for the = 89° cut of a 2A square plate with a ' polarized fixed

source at 0' = 450 4 1 00.

Moment Method

0 30 60 W0 20 150 WB
0 (deg.)

Figure 30: RCS for the 0 89' cut of a 2A squae plate with a 4,I polarized fixed
source at 6i = 45°, Oi = 00.
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C D . . . . .. . ... . . . . . . . .,. . ..°. . . . . . ..o. +. . . .. . . . . .

90 . M . 1o2. 1- 150. 165 W.

0 (deg.-)

Figure 31: Fim, f' = 135*

The specific termsB which are discontinuous in Dc and Dc are examined fur-

ther here. The discontinuity in D' at this point is due to the discontinuity

in 4UTD. Specifically, it is due to the following factor:

Pip 1 )=cos a cot 'cot 0Cos4. (4.1)
"" a

Fim is plotted as a, function of fl with 0 as a parameter and fl' =1350 in

Figure 31. For 4 on the order of a few degrees, Fim changes sign abruptly at

,8 = P3. This is exactly what happens to the contribution to the 4) polarized

field from edge 4 in the above example. The same conclusion may be reached

analytically by realizing that

coaa cot#' - cotocos) AP
Fim(P#1 03'4) _ sina______0_2____A#) (.2

where

0 (4.3)

60



(4.4)

for AO and A#3 small. Which will further reduce to the following signum

function if AO << A#3:
_ cosacot 0' - cot 0cos -, agn(AP) (4.5)

sin a

as 4)-0.

The discontinuity in D" is examined next. The only factor in D" that is dis-

continuous at the intersection of the Keller cone and the half plane associated

with the edge (P = fl' and 0 = 0) is

Fm - sin--a (4.6)

This factor only causes a discontinuity in the MUTD term since another

factor in the MPO causes MPO to go to zero here. Fm is plotted as a

function of P3 with ) as a parameter and 0' = 135" in Figure 32. For

on the order of a few degrees, Fm becomes a very narrow spike at # = f'.

This also occurs to the contribution for the 6 pqlarized field from edge 4 in

the above example. The same conclusion may be reached analytically by

realizing that:

sin a AO
F ( ,f, = (• ))... (. .. .. (4.7)

where:

A '= (4.8)

A# = 0 -/ (4.9)

for AO) and A# small. Equations (4.2) and (4.7) show that Fin and Fm are

very similar with the major difference being that the roles of AP3 and AO
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0? (deg. )

Figure 32: Fm, fl' =135~'

are interchanged. Fi.. and Fm are plotted again in Figure 33 and Figure 34,

respectively, this time as a function of 4, with P as a parameter and fl' = 135*.

These discontinuities are not reatricted! to the case of bistatic scattering and

may also appear for backscatter examples. The baciscattered field (co- and

cross-polarized), for a i polarized field incident upon the plate shown in Fig-

ure 28 and calculated close to the x-y plane (0 = 890), is shown in Figure 35.

In both cases the patterns have a glitch, due to the contributions from the far

edge at 4, = 900, similar to those in the previous bistatic results. It should

be noted that the fields for a 4, polarized incident field (shown in Figure 36)

are smooth for this pattern. The cross polarized field, a#G, is not visible on

this plot since it is below -50 dB/A 2 through the entire pattern.
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on.

P3-135;5

Ln
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Figure 34: Fim,I?' =1350
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- Co.polaried RCS
- Crom-polarised RCS

..... .....- . .

S........
/ 

~.t: 
A-

-45 -30 -15 0 5 30 45

0 (deg.)
Figure 35: Backscatter (ceg and oeo) from a 2A square plate for 0 = 890

P-d poIiseRS- - Crof-.po!Wimed RCS J

-45 -30 -6 0 15 30 45

*0 (deg.)
Figure 36: Bsckscatter (ooo and u#) from a 2A square plate for 6 89'
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The discontinuity in the new equivalent currents (and the diffraction coef-

ficients) at the intersection of the Keller cone and the infinite half plane

associated with the edge (l = f' and 0 = 0) may be expected to cause

discontinuities or narrow spikes depending on the polarization and the pat-

tern cut. As the examples illustrate these disturbances only affect a typical

pattern cut for around 50 to 100. Further information on how the solution

behaves in this region is discussed in Section 4.3.

3. Excluding the case when the diffracted ray is in the same direction as the

incident ray (see item 1), the currents are all finite for both edge on incidence

(0' -. 0, w) and edge on observation (# --, 0, 7). This is shown for edge

on incidence in Appendix B. For edge on observation it is easily seen by

noting that the factors of 1 / sin # in the equivalent currents are cancelled by

a factor of sin 0 in the numerator of the radiation integral due to either S x i

or i x S x i depending on whether it is an equivalent electric current or an

equivalent magnetic current.

4. D' and D' are discontinuous for 4' = w, since LP'O, iJPO, MPO, MLPO

are discontinuous for 0' = r, except for two important special cases. In the

case of backecatter 0 = /= 7 and all of the components with the factor

containing the step function are zero for O/ = 7r, so that the resulting corner

diffraction coefficient is continuous. When the observation point is on the

Keller cone ILPO - 0 and MLPO = MPO so that the discontinuous

components in the corner diffraction coefficients cancel leaving the corner

diffraction coefficients continuous. It is pointed out how this discontinuity

may affect some typical patterns in Section 4.4.
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5. Dc, and Dc are all infinite at the shadow boundaries because the LPO

components are infinite. The LPO components are infinite because the vec-

tor identity used to derive them is not valid at the shadow boundaries (see

the end of Section 3.2). This is not a problem in practice since the cor-

ner diffraction coefficients will remain finite a small distance away from the

shadow boundaries.

6. All of the diffraction coefficients become infinite on the Keller cone. This

is not a problem however, since for straight edges the contribution from the

other corner of the edge will also be infinite and their sum will combine to

form the familiar sin x/x pattern associated with a constant current element.

7. The contribution to the scattered field from the individual corner happens

to be infinite when # = P3. This is not the case for the finite plate, however,

since the individual contributions from all of the edges balance each other

to give a bounded result. This is shown analytically in Section 4.5 for the

special case of backscatter from a rectangular plat at normal incidence. It

is also illustrated many times in Chapter V since 0 = 3' for at least one edge

in all of the patterns taken in the principle plane.

4.3 Boundary Conditions

Since the new solution is only valid in the far zone it does not need to meet

the boundary conditions on the scattering structure, except for the special case

of a half plane (semi-infinite). Actually the scattered field in the plane of a given

face must meet different conditions. The conditions on the scattered field may be

easily found using the far zone radiation integral combined with the fact that the

faces of the structure are flat. Given an arbitrary perfectly conducting flat face
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-iroction

incident Rlay
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Figure 37: Boundazy Conditio-as Example.
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ohown in Figure 37 and illuminated from some arbitraiy direction, the far zone

scattered field is given by

jkZ0  e -JkR. Ifs r(4.10)
47r R ' x ds f-aa (.0

where the important coordinates are defined in Figure 37 and 4 is the actual

current on the surface of the face. Obviously J8 only has nonzero components in

the i and j directions. As a result when the observation point is in the plane

of the face (the x-y plane) the z component of the total scattered electric field

must be zero. This also implies, by reciprocity, that the total scattered fl-Id in

the special case when the face shown is the only scattering object (n=2) should be

zero everywhere for a i directed source placed in the x-y plane. These conditions

only apply to the total scattered field and do not necessarily apply to a first order

solution as is given here.

It is asnumed that the first order fields radiated by the equivalent currents

must meet them conditions in the plane of the face. (Why this assumption is not

correct will be discssed later in this section.) This assumption combined with the

radiation integral for the equivalent edge currents given by

-=J - )i R ` (4.11)

or the cqruer diffraction coefficients lead to the following properties:

1. M=O and D' = 0 when 4 = 0 or i=r ,

2. 'm=M-0 andDg=D=0 whenýt'-0andn=2oro w=andn=2

(I = 0 and D' contributes tero to the scattered field =iace E t' = 0).

Pl'gging 0 = O, w into the new solution it is seen that the first property is met

everywhere in the plane of the face with the exception of two directions. One
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is in the forward scatter direction which corresponds to the Ufimtsev singularity

discussed in item 1 of Section 4.2. The other direction where this property is not

met is the directiop where the Keller cone and the infinite half plane associated

with the edge meet. It is interesting to note that this direction lies along the

infinite strip used in deriving the equivalent fringe currents. T- ,,o of the equivalent

currents associated with the solution to the infinite wedge (IUTD a:.I MU D) areiM
discontinuous here, as illus.rated in item 2 of Section 4.2. It appears that the

solution meets the first far zone condition given above ýverywhere except on this

strip where it meets ýhe boundary conditions on a PEC. Plugging in q? = 0, 7r and

n = 2 into Equations (3.47) and (3.49) it is easily seen that the second condition

given above is not met in general.

BotL the previous equivalent currents given in Section 2.6 and the previous

corner diffraction solution given in Section 2.7 meet the boundary conditions on

the infinite half plane associated with the edge. That is I = 0 (and D' = 0) for

0 and I = 0 (and D' = 0) for C=0.

It has been shown that, in general, the first order solution should not meet

the far zone conditions described here. Specifically, both Sikta [26] (for the special

case of backscatter) and Tiberio [271 have shown that for the two-dimensional

problem of an infinite strip of finite width the double diffraction term cancels

the first oder term so that the far zone conditions in the plane of the face are

met. ,'he new solution is still consistent with this requirement since it reduces

to the previous equivalent currents for observation points on the Keller cone (see

Section 4.6). Since the solution to the infinite quarter plane has not been reduced

to a ray optical form, the conditions that the first order field must meet in the

plane of the face when the olservation point is not on the Keller cone are not clear.

In this case the new solution and the previous solutions behave much differently.
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Therefore, when the observation point is not on the Keller cone the higher order

terms for the new solution may be significantly different than those developed for

previous solutions. Some results for three-dimensional problems including higher

order terms have been published by Sikta, et al. (21 and (261 and Michaeli [281 using

the previous equivalent currents and the new equivalent currents, respectively.

4.4 Reciprocity

Although only the total scattered field must satisfy reciprocity, once again it

would seem desirable for the first order scattered field given by the new equivalent

currents or corner diffraction coefficients to also satisfy reciprocity. Both the re-

flected GO field and the edge diffracted field satisfy reciprocity even though they

only make up a partial contribution to the total scattered field. Even though the

new solution is not reciprocal, several examples are given that show it is probably

close enough, in most cases, for engineering purposes.

A simple examnple is used to illustrate that the new soiution is not reciprocal.

This is shown by considering where the singularities of the fringe occur. Neither

If -M- TD - nor Mf UTD - MIO approach definite limits as the

observation point approaches the intersection of the Keller cone and the infinite

halfgplane associated with the edge of the plate. However if the source is allowed to

approach this position in the same way all of the currents are finite and approach

definite limits. Using these properties a simple example is given which shows that

the solution is not reciprocal. A triangular flat plate, as shown in Figure 38, is

illuminated by a source positioned above the plane of the plate in position one.

The observation point is placed at position two in the plane of the plate such that

it lies on the Keller cone for the points on edge one, as indicated in Figure 38.

Both I/ and Mf are undefined for points along edge one which makes a nonzero
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contribution to the radiation integral. Therefore the scattered field is not defined

here. However if the source and receiver axe interchanged all of the currents are

well defined and therefore the scattered field will be defined. It is not surprising

that the new solution is not reciprocal since it contains PO terms which are not

reciprocal themselves.

Several examples of bistatic scattering from a flat plate or a cube are given

here to illustrate that the solution is essentially reciprocal in many instances. All

of the examples are in terms of linearly polarized antennas in the far zone of the

scatterer. First the RCS is calculated when the first antenna is receiving and the

second antenna is transmitting. The RCS is then calculated for the reciprocal

problem (antenna one transmitting and antenna two receiving). Both patterns are

plotted on the same graph as a function of the position of antenna one, so that

they may be easily compared.

The first set of examples show the scattering from a square plate two wave-

lengths on a side as shown Figure 39. In the first two examples both antennas are

moved in the principle plane while they are offset by 900 in that plane, as shown in

Figure 39. Figure 40 shows the results when both antennas are linearly polarized

in the i direction, while Figure 41 shows the results when they are both linearly

polarized in the 4 direction. The cross-polarized fields axe zero in both cases. The

results show that in this case the solution is reciprocal for practical purposes. This

is not surprising since in this case the major contribution to the fields comes from

the front and back edges. The receiving antenna lies on the Keller cone of the

front and back edges for the entire pattern cut. The new solution is reciprocal

for observation points on the Keller cone since, as is shown later in Section 4.6, it

reduces to Keller's result there.

In the next two examples both antennas are moved in the 4, 450 plane offset
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Figure 39: Relative positions of the two antennas for the first two patterns.
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"- Antenna I Rx (i polarised)

A- Antenna 1 Tx (i polatried)

S........ ....... .. .. .. . ....

0 30 60 90 120 50 80

0 (deg.)
Figure 40: RCS of 2A square plate for 0 polarized antennas (which are positioned

as indicated in Figure 39) in the 4' = 0' plane.

- Antenna I Ri (0 polarised)
- AntennaI Ti (j polaried) I

n0 30 60 90 120 15016

en

0 (deg.)
Figure 41: RCS of 2A square plate for € polarized antennas (which are positioned

as indicated in Figure 39) in the 4' 0* plane.
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Figure 42: Relative positions of the two antennas for the next two patterns.

by 900 in that plane, as shown in Figure 42. Figure 43 shows the results when

both antennas are linearly polarized in the i direction, while Figure 44 shows the

results when they are both linearly polarized in the 4 direction. The cross-polarized

fields are zero in both cases. Although the results are not nearly as close as in the

previous patterns, the major differences occur when either the receiver or the source

is near the plane of the plate where higher order terms may become important.

The antennas are moved in the 4 = 300 plane offset by 300 in that plane as shown

in Figure 45 for the next three examples. Figure 46 shows the results when both

antennas are linearly polarized in the i direction, while Figure 47 shows the results
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/ Antenna i Rp (8 olarise
-Antenna I Tz (i polarized)]

iQ
., .:. ..:... .. .. ... .

S.. .. :.

* t It

0 30 60 90 120 150 tlO

0 (deg.)
Figure 43: RCS of 2A square plate for 0 polarized antennas (which are positioned

&3 indicated in Figure 42) in the 4= 45 plant.

Antenna I Tx ( polarized)

. ......".....

0 30 0 120 bo vo
o (deg.)

Figure 44: RCS of 2A square ]plate for 4 polarized antennas (which are positioned
as indicated in Figure 42) in the 4, = 450 plane.
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Figure 45: Relative positions of the two mnteunas for the next thruee patterns.
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- Antenna I Ri (9 polari"e) J .

Antenna I Tx _(9polarised)

U.,,

.. . . . . . ..*. . . . .. . . . . .. . . . .

0 30 60 90 120150
0 (deg.)

Figure 46: RCS of 2A square plate for 0 polarized antennas (which are positioned
as indicated in Figure 45) in the 4 = 300 plane.

when they are both linearly polarized in the ý direction. In this case, however,

the cross-polarized fields are no longer zero. It should be noted that reciprocity

does not imply that ago = a#8 for bistatic scattering, and in general o0'9 ? •00

for bistatic scattering. Reciprocty implies that the pattern remains unchanged if

the antenna originally transmitting receives while the antenna originally receiving

transmits, but the positions of the two antennas remain unchanged (in the bistatic

case, c0roo,,u give the results when the positions of the antennas are interchanged).

Figure 48 gives the cross-polarized results when antenna one is linearly polarized

ir, the 0 direction and antenna two is linearly polarized in the ý direction. If

the polarizations are reversed, that is antenna one is linearly polarized in the 4

directiva and antenna two is polarized in the 0 direction one simply obtains the

mirror image of both curves due to the symmetry of the problem.

The co-polarized fields are close to being reciprocal in this case. The cross-

polarized fields are reasonably reciprocal for •.gions away from the plane of the
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"- Antenna I Rx (0 polarized)
- - Antenna I Tx (* polarized)

. ~~. . . ,. . . . .. . ..

UM

0 30 60 9 120 150 ISO
0 (deg.)

Figure 47: RCS of 2A square plate for 4, polarized antennas (which are positioned
as indicated in Figure 45) in the 4 = 300 plane.

AntennaI Ri (i pilarise4)
I Antennia I Ts polansted)

o ', '• <: ........~ ~ ~. •.--. ... .... .... , .... ),

0 30 60 90 120 150 1o

0 (deg.)
Figure 48: RCS of 2A square plate for cross polarized antennas (which are

positioned as indicated in Figure 45) in the 4 = 30' plane.
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Antenna 1

Xy

150 . -- -•y
A-""o 120

XF •Antenna 2

Figure 49: Relative positions of the two antennas for the next four patterns.

plate. In regions near the plane of the plate, the pattern with the null at 0 = 900

is probably more accurate since the plate does not radiate any i pol-rized field in

this plane. The lack of a null here in the other case may be explained by the fact

that Im (or D') does not meet the conditions in the plane of the face described in

the previous sertion. Finally the antennas are moved in a plane found by rotating

the x-z plane 1200 in the ý direction followed by tilting it 30' in the 0 direction,

as shown in Figure 49. The two antennas are then offset by 150* in the x-y plane.

Figure 50 shows the results when both antennas are linearly polarized in the
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- Antenna I ii (_P)1""
-. AntennaI1Tz (HPUj ........

-. .. .

'0

0 30 60 90 120 150 IBO

0 (deg.)
Figure 50: RCS of 2A square plate for horizontally polarized antennas (which are

positioned as indicated in Figure 49).

direction parallel to the plane the pattern is taken in and perpendicular to the

incident ray (Horizontal Polarization), while Figure 51 shows the results when they

are both linearly polarized in the direction perpendicular to the plane the pattern

is taken in (Vertical Polarization). Once again the cross-polarized fields are not

zero. Figure 52 gives the cross-polarized results when antenna one is horizontally

polarized ard antenna two is vertically polarized. Figure 53 gives the patterns

for the opposite case where antenna one is vertically polarized and antenna two is

horizontally polarized. The discontinuity in the four patterns which occurs when

-= 120' and antenna two is transmitting (solid curves in Figures 50, 51, 52,

and 53) is due to the discontinuity in the PO components described in item 4 of

Section 4.2. The discontinuity in the four patterns which occurs when 4 = 90' and

antenna two is transmitting is due to the discontinuity in the contribution from

the edge along the x-axis. The direction ) = 90' corresponds to the intersection of

the Keller cone and the infinite half plane associated with this edge (f1 i l 300
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i -- AntennI Rx (VP)*

: Atenna I Tz (VP)
• '- ' " ! r• ' ' ' I * I ... '

0 30 60 90 120 10 18

4 (deg.)

Figure 51: RCS of 2A square plate for vertically polarimed antennas (which are
positioned as indicated in Figure 49).

Antenna I T' (HP) "

U,,

* *

o 30 60 90 120 50 66

0 (deg.)
Figure 52: RCS of 2 square plate for antenna one horizontally polarized and

antenna two vertically polarized(which are positioned as indicated in Figure 49).
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- Antenna I Rf (VP)]

-- Antenna I Tx (VP

.n .. . . .

CD
......... ..".. .. .:.' . .. i. .

............

0 30 60 90 20 ISO IO

4 (deg.)
Figure 53: RCS of 2A square plate for attenna, one vertically polarized and
antenna two horizontally polarized (which are positioned as indicated in

Figure 49).

and 0)1 ,:z 00) where the corner diffraction coefficient is discoAtiauaous iuee item 2

of Section 4.2). The discontinuity in the four patterns which occurs when 4) = 900

and antenna one is transmitting (dashed line in Figures 50, 51, 52, and 53) is due

to the discontinuity in the PO components described in item 4 of Section 4.2. For

directions at least 15* to 200 away from these discontinuities the solution is close

to being reciprocal.

To get some indication of the effect of wedge angle on these examples the

same patterns are repeated for the case of a cvbe two wavelengths on a side. The

cube is position•d in the usual way so that each edge is parallel to one of tha three

axes. The relative positions of the antennas for the first two patterns are given in

Figure 39. Figure 54 shows the results when both antennas are linearly polarized

in the 6 direction, while Figure 55 shows the results when they are both linearly

polarized in the ý direction. As in the case of the flat plate the co-polarized field
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-Antenna 1 Rx (0 poiarixedl .

S n- Aptna I fT.a(polarixed)ý
-- I I . I -- -

0 30f 90 W20 150
0 (deg.)

Figure 54: RCS of 2A cube for 9 polarized antennas (which are positioned as
indicated in Figure 39) in the $ = 0 plane.

T- ""AnLn _ I R, (j polarized)
Autn I Iplrzd

030 WO 90 2 150 0

0 (deg.)

Figure 55: RCS of 2A cube for ý polarized antennas Swhich are positioned as
indicated in Figure 39) in the • = 0 plane.
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S., .:..... ............. . .... ..
•h .. ... . .., .... :

. . .. . .. ..... ... .. ... . ..

0 30 60 90 120 50 1BO

E) (deg.)
"Figure 56: RCS of 2A cube for 6 polarized antennas (which are positioned as

indicated in Figure 42) in the 4' = 45" plane.

in the principle plane is reciprocal for practical purposes. This is expected since

the major contribution to the scattered field is from the edges perpendicular to the

pattern plane. In both examples the receiving antenna lies on the Keller cone of

these edges where the solution reduces to Keller's form as discussed in Section 4.6.

The small discontinuity at the peaks of the ý polarized pattern is due to the

contribution from the two edges parallel to the pattern plane and farthest from

the source and receiver. The contribution from these two edges is discontinuous

in this case due to the discontinuity in D' and D' described earlier in item 2 of

Section 4.2.

In the next two examples both antennas are moved in the 4' = 45' plane offset

by 900 in that plane, as shown in Figure 42. Figure 56 shows the results when both

antennas are linearly polarized in the 9 direction, while Figure 57 shows the results

when they are both linearly polarized in the ý direction. The cross-polarized fields

ar zero in both cases. The results are fairly close to being reciprocal, although
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A- ntenna I Rx polarsed) ]
I-- Antenna I Tx (z polarised)

O . ...,. .. . . ...... . . . :.. . . . . . . . . . . . . . . . . . . ... . . . . . . . . .

M 
. . .. . . . . . . . . . ... ' .

S. . . . . . .. . . . . . . . . . .

0 30 60 90 120 150 180

0 (deg.)
Figure 57: RCS of 2A cube for ý polaxied antennas (bwhich are positioned as

indicated in Figure 42) in the 0 = 45 plane.

not as close as in the principle plane. All of the patterns are discontinuous at

S= 00,900,1800. This discontinuity is due to the discontinuity in the LPO and

PO terms of Dc and D' as described in item 4 of Section 4.2. The antennas are

moved in the • = 300 plane offset by 300 in that plane as shown in Figure 45 for the

next three examples. Figure 58 shows the results when both antennas are linearly

polarized in the 9 direction, while Figure 59 shows the results when they are both

linearly polarized in the ý direction. In this case the cross-polarized fields are not

zero. In order to avoid numerics] problems associated with edge on incidence (see

Appendix B) the cube was tilted 50 in the plane normal to the 0 = 300 plane for

these calculations. Figure 48 gives the croe-polarized results when antenna one

is linearly polarized in the i direction and antenna two is linearly polarized in the

Sdirection. If the polarizations are reversed, that ie, if antenna one is linearly

polarized in the j direction and antenna two is polarized in the 9 direction, one

simply obtains the mirror image of both curves due to the symmetry of the problem.
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- Antenna I Rx (i polariled)
Antenna I Tx (9 polarised)

.. .- . . . . . . . . . . . .. . . . . . . . . . .. . . . .. . . . . .. . . . . . . . . . ....

., .

U-),i I I
0 30 60 90 120 N IO

0 (deg.)
Figure 58: RCS of 2A cube for 0 polarized antennas (,which are positioned as

indicated in Figure 45) in the 4 = 30 plane.

- Antenna I Rx (1 polarised)
Antenna I Ta x polarized)

o 30 60 90 120 ISO SO
0 (deg.)

Figure 59: RCS of 2A cube for 4 polarized antennas (Iwhich are positioned as
indicated in Figure 45) in the 4 30 plane.
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- Antenna I Rx ( polatisd) I
Antenna I Tx J polarised)

0 30 60 90 120 150

0 (deg.)
Figure 60: ROS of 2A cube for cross polarized antennas (which a-e positioned as

indicated in Figure 45) in the 0 = 300 plane.

The co-polarized fields are essentially reciprocal in this cue. The cross-polarized

fields are close to being reciprocal, except in the region from G = 600 to 900. All

of the patterns for the case corresponding to the final example given for the plate

have so many discontinuities that it is very difficult to get any information from

them. For this reason they have been omitted here.

The major difference between the results for the flat plate and the results for

the cube is the increase in the number of regions in space where the PO disconti-

nuity (item 4 of Section 4.2) shows up in the patterns.

The examples given here illustrate that the solution is clost .,,j Tciprocal

for the caes shown, except in regions of space where the patterns are discontinuous.

4.5 RCS of a Rectangular Plate at Broadside

As a check on the corner diffraction coefficient, the radar crosw section of a

flat rectangular plate (length 1, width w, and area A) at broadside was cdculated
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analytically (see Appendix C). The resulting co-polarized cross section, for either

polarization, is given by
4wrA 2

A2  

(4.12)

This is the well known PO result, which is generally accepted as adequate for engi-

neering purposes for sufficiently large plates. Therefore the new corner diffraction

solution can be expected to give the correct value for backscatter from a general

shape (consisting of flat plates) at broadside.

4.6 Equivalent Currents on the Keller Cone

The expressions for the equivalent currents on the Keller cone are easily ob-

tained by letting#• = fl' in Equations (3.38) and (3.40) combined with the fact

that a = -f= 0 in this case. The resulting expressions for the equivalent currents

with the contribution from both faces included is:

M jH f[o 7 (0 -(4 + _cot + ___

M ~ o = 1Asin2 , 1ot I k 2n2

+ [cot (7( + +) +cot (rw+ +#)] (4.13)

-t o 7r~ (-qSYP + cot (w + (4)- ))~

nZk in23 ot I 2n J2n )

- cot (0 (+4)) + cot +± +)')] (4.14)

These are the same expressions for the equivalent currents as obtained by Ryan

and Peters [11 given in Section 2.6. Ryan and Peters equivalent currents predict

the same fields as Keller [10] obtained if the edges are straight and the observation

point is on the Keller cone. Since the new equivalent currents and the new corner

diffraction coefficient give the same result, the corner diffraction coefficient reduces

to Keller's rebult for observation points on the Keller cone.
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4.7 Physical Significance of Parameters a and 7

The two angles a and -y in the expressions for the equivalent currents obvi-

ously do not represent physical angles since they may become complex for several

directions of incidence and observation. It is easily seen, however, that they are

related to the directions along which the asymptotic endpoint contribution is taken

in deriving the equivalent currents (described for the equivalent fringe currents in

item 5 of Section 3.3). The first term, in Equations (3.44) and (3.45) is common

to both a and y along with the previous a parameter obtained by Michaeli [13] in

his first paper on equivalent currents. The second term depends on the direction

of integration used in finding the equivalent currents. Buyukdura [291 has shown

that the equivalent currents associated with the PO surface integral (LPO terms)

may also be obtained by making two simple changes to the procedure Michaeli

used to find the fringe equivalent currents. The GO current is used on the infinite

tangent wedge instead of the true current and the spatial integral is taken in the

direction such that

coti 61 cos C - cos ('
sini coo + sin O'cosel (4.5)

v is the angle betwe-.n the positive edge tangent and the direction of in-

tegration as shown in Figure 61. As explained in Chapter III the spatial integral

used to evaluate the fringe equivalent currents was taken in a direction 02, where

cot 02 = cot i', also shown in Figure 61.

Using the above angles it has been found that the new equivalent currents (and

corner diffraction coefficients) may be written in a symmetric form for the special

case of a flat plate. In this symmetric form, the arguments of the trigonometric

functions are real valued for all angles of incidence and observation. It is also

speculated that this may be done for a general wedge angle, although a method of
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Figure 61: Integration direction (strip orientation) used to find the LPO
components of the equivalent currents.
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functions are real valued for all angles of incidence and observation. It is also

speculated that this may be done for a general wedge angle, although a method of

doing so has not been found. In the special case of a flat plate (n=2) the currents

may be rewritten by properly using Equations (3.47) and (3.49) along with the

trigonometric identities given in Section 3.4. The resulting expressions for the new

equivalent currents are given by

M = MLPO + MUTD - MPO (4.16)

I = Ie +Im (4.17)
Ie,m = + TD -P, (4.18)

where:

MLPO jLPO 2(1)

ILPO 
-2 s V

{[ot 4 o

MUTD, IUmTD 1 ch,2

JUTD j 2  cS

M~0 I~ 0 1 g;[ h2 2)[cot (02~ +'O)) -cot Ir+( 2 +~ )

MP° ,l• 1'" ah,2(2)

[ o 0 2 [ s(2)

[,o (w,-,(,2 + (- 0 + }
2 ) -cot
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a2(m) = jHjt sinfOm (cot 0 cos + cot 3' cos ') (4.20)
k sinym

c j = Al sin 2 '4sin)cos
Yok sin# sintk2 sin9 4.21)

CS = jEt' sin Ofsin (4.22)
ZOk sin 3' sin 0' cos 4

c2t = [cot of' (cOs 0k2 -cos
2 ('

k sin 'A2 sinV

-Sin 2 10 cot 3 Cos C 1 (4.23)

cosobm = 6n OmsinP3cos0+o s Omcos1 (4.24)

coo 0' = sinOmsin13'coo0'- cosomcosf3' (4.25)
cos13 - cs•

cot01- = Cos# +s#' (4.26)

cot 02 = cot 13' (4.27)

Si = {;-1 , 1V!<0 (4.28)

!1 ,wr-4/>0

The details are outlined in Appendix D. Notice that the arguments of the cotan-

gent functions now correspond to physical angles and will always be real valued.

The angles 01, Ol, 02, asd 0 are the angles between either the incident or the

diffracted ray and either of the spatial integration directions, 01 or 02, used in

finding the equivalent curgents. The four new augles are defined by:

Cos6i0 =-&1 (4.29)

COO 2 = (4.30)

*Cos 0 = J (4.31)

coe0 = S'&2 (4.32)

93



where:

&1 = !sin0j + icosO1  (4.33)

&2 = bsin02+icosO2 (4.34)

and 01 and 02 are given in Equations (4.26) and (4.27), respectively. The first

two angles, tbi and 42, are the angles between the observation direction and the

direction that the asymptotic endpnitt contribution was taken for the LPO and

fringe components, respectively. Likewise the second two angles, 0 and 0 are

the angles between the incident ray direction and the direction that the asymptotic

endpoint contribution was taken for the LPO and fringe components, respectively.

The LPO and PO components are easily written in this way. The UTD components

look more complicated in this form, however it may be possible to write the UTD

components in a form similar to the LPO and PO components if the endpoint

contribution is done over entirely in a different coordinate system.
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CHAPTER V

RESULTS

5.1 Introddction

The scattered fields predicted by the new corner diffraction coefficient derived

in Chapter III are compared with previous high frequency solutions, measurements,

and Moment Method solutions for some specific examples. The new solution is first

compared with a few backscatter examples commonly found in the literature to

show that in the principal planes it generally gives the same results as previous

solutions. Then the new corner diffraction coefficient is compared with measure-

ments for a swept frequency case which is described later. Finally the new corner

diffraction solution is compared with Method of Moments and measurements for

some new examples. Throughout this chapter the new corner diffraction solution

and the new equivalent current solution will both be referred to as the new or new

corner solution. Note that it was shown in Chapter III that both give the same

result• for first order scattering.

5 .2 Brief Description of Program

A computer program written previously at OSU to calculate the RCS of a

convex perfectly coaiducting body constructed from flat plates with straight edges

was modified to calculate the RCS using the new solution. Since the program

was written to handle objects with straigiA edges, the equivalent current form

95



of the solution, given in Equations (3.38) and (3.40), was used. The integration

along the edge was done in closed form to give the contribution from each edge.

For structures other than flat plates, it is also necessary to take shadowing into

account. Since only concave structures are considered here this is fairly simple.

The shadowing of the incident field is accounted for in the Et and It' terms in the

equivalent currents and the unit step functions in the LPO and PO components of

the equivalent currents. The shadowing of the diffracted ray is more complicated.

The contribution from the LPO and PO components are present everywhere. They

are treated as if they are radiating in free space, just like typical Physical Optics

surface currents. The UTD components are rhadowed like diffracted fields. They

do not contribute if the observation point is inside the wedge (0 > n').

5.3 Examples

5.3.1 Ross

The backscatter at 9.227 Gl0z from a 4" x 4" plate in the y-z plane is shown

next (see Figure 62) with the results for a pattern cut taken in the x-z plane are

shown in Figure 63. Both the new corner and Sikta's results are basically the same

near broadside, as expected. Sikta's results include double and triple diffraction,

and thus are more accurate. In Figure 64 the new solution is compared with the

equivalent currents of Ryan and Peters (the first order solution used by Sikta) and

the previous corner solution. The three first order methods give essentially the

same answer in this case.

5.3.2 Northrop Fin

The backscatter from the Northrop fin shape shown in Figure 65 is compared

to meamurements and csdculations made by Sikta 1261. The E-plane pattern in

the x-y plane is shown at 17.76 GHz in Figure 66. The new solution is compared
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Figure 62: Ross 4" x 4" plate.
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Figure 63: E-plaiie pattern in x-z plane of Ros plate.
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Figure 64: E-plane pattern in x-z plane of Rose plate.
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Figure 65: Norttrop Fin.
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Figure 66: E-plane pattern in x-y plane at 17.76 GHz of Northrop Fin.

with measurements [301, Sikta's results, and results obtained by Northrop [19].

Sikta's results include higher order terms and are closer to the measured results

than the new corner diffraction solution which includes only first order terms. The

results obtained by Northrop [19], which are based on the exact solution of an

infinite strip, are also close to the measured results and are essentially the same

as S ,_ results. The new solution once again agrees well with the measurements

in th , region near broadside to the plate. The new solution is compared to first

order results obtained by Sikta in Figure 67, to show that higher order terms are
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to

0 30 60 90 120 150 180(deg.)

Figure 67: E-plane pattern in x-y plane at 17.76 GHz of Northrop Fin.

important in regions farther than 30' from broadside. Once again Sikta used tihe

Ryan and Peters equivalent currents to obtain the first order contribution to the

scattered field. The new solution and the first order solution obtained by Sikta are

about the same as expected.

5.3.3 Sikta's triangle

The new solution is first compared with calculations and measurements ob-

tained by Sikta [261. The backscatter in the principal plane from the triangle shown
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a

Figure 68: Sikta's Triangle.

in Figure 68 was calculated for different values of a/A and a. The fields calculated

using the new corner diffraction coefficients are compared with the results given by

Sikta [26]. Sikta calculated the fields using Ryan and Peters equivalent currents to

find the first order terms plus higher order terms (double and triple diffraction).

The results are shown in Figures 69 to 92. Throughout these examples the two

different polarizations are alternated, with the 6 polarized field being followed by

the 4'polarized field. In Figures 69 to 74, the triangle length is varied (a =2A,

3A, 9A) while the vertex angle, a, is held constant at 300.
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Figure •39: The E-plane pattern (4i = 00) for Sikta's triangle with a = 2,A and

= 30".
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Figure '10: The H-plane pattern (~=00) for Sikta's triangle with a =2A and
ak = 300.
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In Figures 75 to 80 the results obtained using Ryan and Peters (1I equiva-

lent edge currents (the first order solution used by Sikta) are compared with the

results obtained using the new corner diffraction coefficient. The different polar-

izations and triangle sizes are given in the same order as that used previously in

Figures 69 to 74. In Figures 81 to 86 the triangle length is held constant at a = 4A

while the vertex angle a is varied (a = 450, 600, 900).
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Figure ii: The E-plmne pattern (• = 00) for Siktat s triangle with a =3A and
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Figure "72: The lI-plane pattern (•b 00) for Sikta's triansle with a = 3A and

a = 30°.
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S- Corner Diffraction
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e , 0 30 60 90 120 150 1800 (deg.)

Figure I5: The E-plane pattern (0 = 00) for Sikta's triaigle with a = 2A and
a = 300.
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Figure 76: The H-plane pattern (0 = 00) for Sikta's triangle with a = 2A and
300.
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Figure 77: The E-plane pattern (4 = 00) for Sikta's triangle with a 3A and
a = 30'.
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Figure 78: The H-plane pattern (4, = 00) for Sikta's triangle with a = 3A and

a = 300.
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Figure 79: The E-plane pattern (= - 00) for Sikta's triangle with a = 9A and
a = 300.
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Figure 80: The H-plane pattern (= 00) for Sikta's triangle with a = 9A and
a = 300.
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"Figure 81: The E-plane pattern (0 = 00) for Sikta's triangle with a = 4A and
a = 450.
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_ Figure 82: The H-plane pattern (q• = 00) for Sikta'a triangle with a = 4A and

-- ~ a-=45 °.
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Figure 83: The E-plane pattern (• = Q0) for Sikta a triangle with a = 4A• and
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Figure 84: The H-plane pattern (• = 00) for Sikta's triangle with a = 4A and

Q = 600.
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Figure 86: The H-plane pattern (• Q0) for Siktes' triangle with a = 4A and
a=900.
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As5 before, the results obtained iiaing Ryan and Peters [1] equivalent edge

currents (the first order solution used by Sikta) are compared with the results

obtainted using the new corner diffraction coefficient in Figures 87 to 92. The

different polarizations and triangle sizes are given in the same order as that used

previous~y in Figures 81 to 86.
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Figure 87: The E-plane pattern (• = 0') for Siktais triangle with a = 4A and
c= 4,5.
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SFigure 88: The H-plane pattern (0• ( 0  for Sikta's triangle with a = 4A and

a 1 45°.

S q l ... .... ...... .. .1 2 5



- Corner Diffraction
. Sikta's First Order

(.4

0 0 60 90 120 150 180

0 (deg.)

Figure 89: The E-plane pattern (= 00) for Sikta's triangle with a 4A and
o 600.
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Figure 90: The H-plane pattern (4 = 00) for Sikta's triangle with a 4A and

a - 600.
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Figure 91: The &plane pattern 00) for Sikta'2 triangle with a 4A and
a= 900.
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Figure 92: The H-plane pat -,ern (4 = 00) for Sikta's tri.ngle with a = 4A and
g=9o".
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In all cases the new solution and the measurements match well in the region

within 500 of the broadside to the plate. In addition for the case of • polarization

the new solution and the measurements are close enough for engineering purposes

all the way to the plane of the plate in the region away from the tip of the triangle.

For either polarization the new comer and the measurements differ significantly

in the region of the tip of the triangle. Sikta shows that higher order terms are

important in this region. The new solution and the first order terms obtained by

Sikta using the equivalent currents of Ryan and Peters are approximately the same

for all of the examples given here. There are only minor differences between the

two different methods which become smaller as the size of the triangle is increased.

5.3.4 Cube

A few examples are illustrated here for the scattering from a cube with one

wavelength long sides. The results are compared with those obtained using the

Method of Moments. The cube is positioned relative to the axes in the usual way

(each edge is parallel to one of the coordinate axes). The results for co-polarized

backscatter in the principle plane are shown for the H-plane (with 0 = 900) in

Figure 93 and for the E-plane (with • = 900) in Figure 94. The results obtained

are very close to those obtained using the Method of Moments.

5.3.5 6" Cube

In this example the new solution is compared to backscatter measurements

made on a 6" cube. All of the results are for co-polarized fields only. With

the cube oriented so that each edge is parallel to one of the axes as shown in

Figure 95, the pattern was taken in the x-y plane at 10 GHz. The results for a

vertically polarized (or i polarized) incident field are shown in Figure 96, while

the results for a horizontally polarized (ý polarized) incident field are shown in
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Figure 93: H-plane pattern for Cube (with e 900).
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Figure 94: E-plane pattern for Cube (with =900D).
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Figure 95: Cube geometry with the illuminated corners labeled.

Figure 97. The results agree fairly well everywhere, with differences of only a few

dB throughout the patterns. The patterns are repeated for a cube tilted 450 in

the x-z plane as illustrated in Figure 98. The results for the H-plane and E-plane

patterns taken in the x-y plane are given in Figures 99 and 100, respectively. The

results do not agree as well in this case. This is probably due to a combination of

errors in the theory and in the measurements. The major error in the theory is the

lack of higher order terms. The error in the measurements is likely two fold. First

the faces of the cube were misaligned and so they did not form edges as sharp as

may be required. Secondly it seems that there was some deviation from the desired

pattern cuts as can be seen from the lack of symmetry in the measured patterns.

The final patterns are for a cube tilted 450 in the x-z plane followed by tilting

it 35.20 in the y-z plane so that the z-axis coincides with one of the long diagonals

pasing through the center of the cube (as illustrated in Figure 101). The results
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Figure 96: H-plane pattern for 6" cube.
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Figure 97: E-plane pattern for 6" cube.
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Figure 99: H-plane 8:ttern for 6" cube tilted 450 in the x-z plane.
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Figure 100: E-plane pattern for 6" cube tilted 45' in the x-z plane.

for the H-plane and E-plane patterns taken in the x-y plane are given in Figures 102

and 103, respectively. As with the previous patterns the higher level lobes agree

fairly well, but the lower level lobes do not agree well. The reasons for this are the

same as those stated previously.

5.3.6 Swept Frequency Results

In this section swept frequency measurements ano calculations are trans-

formed to (he time domain as described by Dominek (31] and Leeper (32]. A

brief description of the idea behin, this is given here. While the target remains

stationary the RCS is measured over a wide frequency range. An Inverse Fourier

Transform is then preformed on the frequenc.;: domain data to give the "finite

bandwidth impulse response" of the target as a function of time. In this manner

the different scattering centers on a target may be resolved due to their different

electrical lengths from the source. Obviously the closer the scattering center is

to the source the earlier its contribution will appear in the time response. The
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Figure 101: 6" Cube tilted 450 in the x.z plane, then 35.2" in the y.z plane.
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Figure 102: H plane pattern for a 6" Cube tiltedi 45* in the x-z plane, theni 35.20
in the y-z plane.
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resolution of the scattering centers in the time domain is approximately equal to

the reciprocal of the bandwidth of the measurements. Since actual distances on

the target are related to the time delay by the speed of light, the resolution is

approximately the speed of light divided by the bandwidth of the measurement.

It should be noted that in practice the frequency data is usually passed through a

linear phase filter before the Inverse Fourier Transform is taken. The filtering pre-

vents the resulting time domain function from containing some unwanted ripples

due to Gibb's phenomenon.

For this example a 6" cube was oriented as in Figure 95 and the RCS was

measured for 0 = 35.20, 4 = 450 every 10 MHz while the frequency was swept

from 2 GHz to 18 GHz. This data was passed through a Kaiser-Bessel bandpass

filter with parameter a = 2. The Inverse Fourier Transform was then performed.

The co-polarized results for a vertically polarized incident field are shown in Fig-

ure 104, and the co-polarized results for a horizontally polarized incident field are

given in Figure 105. The first pulse is due to the scattering from the corner closest

to the source. In both cases the calculations match very closely with the measure-

ments. The calculations match the second pulse well for the horizontally polarized

case, while the measurements and calculations are significantly different for the

vertically polarized case. A first order solution can oldy be expected to match the

first two pulses though, since the measured time response includes higher order

terms which have almost the same delays as contributions from the other corners

making it difficult to separate out the contributions from individual corners. The

contributions from each of the illuminated corners are still difficult to identify due

to ihe limited bandwidth of the calculations. Since the bandwidth of the measure-

ments was 6 GHz the resolution should be approximately 0.17 ns. The two way

time delays for the illuminated corners are listed in Table 1. Obviously the returns
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Table 1: Delay times from different corners of the 6" cube.

Corner No. Two Way Delay Time

(see Figure 95 (nsec.)

1 0.00

(ref.) ,_, _,

2 0.41

3 0.41

4 0.83

5 0.83

6 1.24

7 1.24
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Figure 104: Impulse response for 6" cube and a b polarized source at 0 = 35.2°,
S= 450.

from many of the corners have essentially the same time delays so there is not a

separate pulse corresponding to each corner.

5.3.7 Bistatic Scattering from a 2A plate illuminated by a fixed source

The scattering from a square plate two wavelengths on a side is examined in

detail next. The complete scattering matrix (all four values of a) is found for the

plate in the x-y plane with a fixed source at 0' = 450 and 0, = 00 (see Figure 106).

Circular pattern cuts from 0 = 0* to 4- = 900 are taken every 300. The results for

the co-polarized fields and the 0 = 00 pattern cut are compared with the previous

equivalent currents and Method of Moment calculations in Figures 107 and 108

(the results for 4 = 600 are given in Section 2.7 for the previous corner diffraction

coefficients). The cross-polarized fields are zero for both a b polarized incident

field and a ý polarized incident field. The previous equivalent currents and the

141



-1 0. 1 2. 3.

•:• • Corner Diffraction

--- Measurementsn

6I 0CNC
C)_

i-i. 0. 1 2.

TIME IN NANOSECS

Figure 105: Impulse response for 6" cube and a • polarized source at 0 = 35.2',
S= 45°.

new comer diffraction coefficient agree so closely that they essentially lie on top of

each other in this pattern. This is not unexpected since, in this pattern cut, the

receiver is on the Keller cone for the front and back edges, which therefore give the

major contribution to the scattered field. The new solution reduces to previous

solutions on the Keller cone (see Section 4.6), which do not radiate any cross

polarized field for incidence normal to the edge. The results for the 0 = 30' pattern

cut are compared with the previous equivalent currents and Method of Moment

calculations for the co-polarized fields in Figures 109 and 110. Similarly the results

for the cros-polarized fields are given in Figures 111 and 112. The results for

the 0 = 600 pattern cut are compared with the previous equivalent currents and

Method of Moment calculations for co-polarized fields in Figures 113 and 114.

Similarly the results for the cross-polarized fields are given in Figure 115 and
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Figure 106: 2A square plate in the x-y. plane with a fixed source at 0' =45* and
0I~.
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Figure 107: Co-polarized RCS in the 4, = 00 plane of a 2A square plate with a
polarized fixed source at 0' = 450, ,i= 00.
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Figure 108: Co-polarized RCS in the 4= 0* plane of a 2A square plate with a
polarized fixed source at ' -- 450, 4, - 00.
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Figure 109: Co-polarized RCS in the 0 = 300 plane of a, 2A square plate with a
polarized fixed source at 01 450, 0$' 00.
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Figure 110: Co-polarized RCS in the @ 300 plane of a 2A square plate with a
polarized fixed source at 0' = 450, •I = 00.
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Figure 111: Cross-polarized RCS in the 4 = 300 plane of a 2A square plate with a

Si polarized fixed source at 0' =450 4, 00.
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Figure 112: Cross-polarized ROS in the 4, = 300 plane of a 2A square plate with a
4, polarized fixed source at Oi = 450, 4,' 00.
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Figure 113: Co-polarized R.CS in the =600 plane of a.2A square plate with a 0

polarized fixed source at 0' 450, 4P = 00.
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Figure 114: Co-polarized RCS in the 4, = 600 plane of a&2A square plate with a 4"

polarized fixed source at 0' = 450, 0' = 00.
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Figure 115: Cross-polarized ROS in the 4 = 600 plane of a 2A square plate with a

0' polarized fixed source at 09 = 450, 4,P = 00.

Figure 116. The results for the 4? = 900 pattern cut are compared with the previous

equivalent currents and Method of Moment calculations for co-polarized fields in

Figures 117 and 118. Similarly the results for the cross-polarized fields are given in

Figures 119 and 120. Buyukdura (22] also gives results using the iew solution for

the case of a i polarized incident field (the slight differences between his results and

those given here are suspected to be due to a sign error in his program). Overall

the new solution agrees well with the Method of Moment calculations and does

not exhibit the false shadow boundaries mentioned in Sections 2.6 and 2.7. The

previous equivalent current solutions exhibit spikes at the false shadow boundaries

which occur near 0 = 1300 and 8 = 310 for the 4 = 30' pattern cut and near

0 = 240* and 0 = 3000 for the ? = 600 pattern cut. In the region from 0 v 60°

to 120* (i.e. near the plane of the plate) for both the 0 = 300 and 0? = 60* the

new solution and the Method of Moments solution differ by more than 20 dB. It

is suspected that most of these differences are due to the effects of higher order
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Figure 116: CPoss-polarized RCS in the 0 = 60 plane of a 2A square plate with a
4' polarized fixed source at 0 = 450, • = 00.
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Figure 117: Co-polarized RCS in the • = 90' plane of a 2A square plate with a
polarized fixed scurce at 0' = 450, 0' = 00.

149



Corner DiffractionI *: Moment Method
Ryan/Peters Equ v.,Currenta

.jN.

CD,'

0 60 120 180 240 300 560
0 (deg.)

Figure 118: Co-polarized RCS in the 4, = 900 plane of a.2A square plate with a 4"
polarized fixed source at 0" = 45%, 4, = 0o.
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Figure 119- Cros-polifised R'S in the 4 = 900 plane of a 2A square plate with a

01 polarifto fixed source at 0 = 45, 00. =
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Figure 120: Cross-polarized RCS in the 4) = 900 plane of a 2A square plate with a

4) polarized fixed source at 0' = 450, 4)i = 00.

terms (double and triple diffraction, edge waves) which are not included in the new

solution. This may also be the case for a00 in the 0 = 900 pattern, although this

also indicates that the higher order terms for the new solution and the previous

solution must differ for points off of the Keller cone. The results for a pattern cut

near the plane of the plate (6 = 390) have been given in Section 4.2.

5.3.8 Bistatic scattering from a 2A plate illuminated by a fixed source
in a second position

In the previous example the scattered field depended on only one or two

currents along each edge instead of all three. This may be easily seen from the

geometry. For a 0 polarized incident field the incident electric field tangent to the

front and back edges is zero and the incident magnectic field tangent to the two

sides is zero. Therefore only Im (Dc) and M (Dc) along the front and beak edges

and Ie (Dc) along the right and left edges contribute to the scattered field. I1 the

incident field is ý polarized instead, the currents contributing from each edge are
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Figure 121: 2A square plate in the x-y Plane with a fixed source located at
0i = 450, ? 45*.

the opposite of those for the 6 polarized incident field.

In oider that all three currents along each edge will contribute to the scattered

field the source is moved to a new location. Retaining the square plate from the

above example and moving the source to 0' = 450 and 4,i = 450 (see Figure 121)

circular pattern cuts were once again taiken every 30' from 4 = 450 to 4, = 135*.

The results for the co-polarized fields and the 4, = 450 pattern cut are compared

with Method of Moment calculations in Figures 122 and 123. The cros-polariuztO

fields awe zero for both a i polarized incident field and a • polarized incident field.

The results for the 4 = 750 pattern cut are compared with Method of Moment
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Figure 122: Co-polarized RCS in the @ = 450.plane of a 2A square plate with a 6'

polarized fixed source at 0' = 450,1 45'.
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Figure 123: Co-polarized RCS in the 4, = 450 plane of a 2A square plate with a 4"
polarized fixed source at 8i = 45', 0,' 45=.
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Figure 124: Co-polarized RCS in the 4 = 75' plane of a 2A square plate with a
polarized fixed source at 09 = 450, 0i = 450.

calculations for the co-polarized fields in Figures 124 and 125. Similarly the results

for the cross-polarized fields are given in Figures 126 and 127. The results for the

4 = 1050 pattern cut are compared with Method of Moment calculations for the

co-polarized fields in Figures 128 and 129. Similarly the results for the crossa

polarized fields are given in Figures 130 and 131. The results for the 4 = 13*'

pattern cut are compared with Method of Moment calculations for co-polarized

fields in Figures 132 and 133. Similarly the results for the cross-polarized fields

are given in Figures 134 and 135. The conclusions which may be drawn from

this example are generally the same as those of the previous example. The new

solution and the Method of Moments agree well overall. The region of space where

the results are not in good a-eement is close to the plane if the plate as in the

previous example. Once again, it is speculated that these differences are due to

higher order terms (double or triple diffraction).
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Figure 125: Co-polarized RCS in the 4 = 75' plane of a 2A square plate with a .,

polarized fixed source at Oi 450, 0' = 450.
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Figure 126: Cross-polarized RCS in the 4 = 750 plane of a 2A square plate with a

9' polarized fixed source at 0' = 450, - 450.
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Figure 127: Cross-polarized RCS in the 4 = 750 plane of a 2A square plate with a

•ipolarized fixed source at 0' 45*, •i=450.
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Figure 128: Co-polarized RCS in the 4, = 1050 plane of a 2A square plate with a

0' polarized fixed source at 01 = 450, 0' = 450.
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Figure 129: Co-polarized RCS in the 4 = 1050 plane of a 2A square plate with a

4) polarized fixed source at 0' = 450, 4i 450.
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Figure 130: Cross-polarized RCS in the 4 = 1050 plane of a 2A square plate with

a 0' polarized fixed source at 0' = 45', 4' 450.
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SFigure 131: Cross-polarized RCS in the 0b = 1050 plane of a 2A square plate with

Sa ý' polarized fixed source at 0' 450, •i=45o.
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Figure 132: Co-polarized RCS in the 4 = 1350 plane of a 2A square plate with a
a polarized fixed source at 06 = 450, 4i 450.
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Figure 133: Co-polarized RCS in the 0 = 1350 plane of a 2A square plate with a

$i polarized fixed source at 09 = 450, 4P = 450.
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Figure 134: Cross-polarized RCS in the 0 = 1350 plane of a 2A square plate with
a 0' polarized fixed source at 0' = 450, ,I = 450.
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S~Figure 135: Cross-polarized RCS in the 0 = 1350 pla•ne of a 2A square plate with
a ý' polarized -fixed source at 0i = 450, Oi = 450,

5.4 Conclusion

--- = Several examples have been given in this chapter comparing the new corner

-- diffraction solution with previous high frequency solutions, Method of Moments

solutions, and measurements. The first set of examples (Sections 5.3.1, 5.3.2, and

5.3.3) illustrate that the new solution gives essentially the same results as the

_• previous equivalent currents for patterns in the principle plane of flat plates. The

~next set of examples for hieratic scattering (Sections 5.3.7 and 5.3.8) illustrate that

S~the new solution agrees very well with Method of Moments results for a wide range

of bistatic saxies. Further most of the differences between the two are probably

dut to higher order terms.

"10160
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CHAPTER VI

CONCLUSION

The new equivalent currents are valid for perfectly conducting structures with

straight edges and flat faces. The contribution to the equivalent edge currents due

to each face of the edge is given in Equations (3.38) and (3.40) where the an-

gles are the edge fixed angles described in Figure 1 of Section 1.5.3. The total

equivalent edge currents for the special case of a flat plate are given in Equa-

tions (3.47) and (3.49). The equivalent currents may be used to find the scattered

field in the far zone when the object is illuminated by a plane wave.

A new corner diffraction coefficient for finite closed structures made up of

perfectly conducting flat plates has been derived from the nev, equivalent cur-

rents. It has been demonstrated in Chapter V to agre; reasonably well with both

method of moments calculations and measurements, especially in regions of space

where higher order diffracted fields are negligible. The contribution to the corner

diffracted field from one face and one edge is given in Equation (A.2). For the spe-

cial case of a flat plate the contribution due to each edge is given by Equation (A.3).

The important properties of the solution are described in Chapter IV. The new

corner diffraction coefficient may be used to calculate the far zone scattered field,

to first order, from an object illuminated by a plane wave.

The new comer diffraction coefficients and equivalent currents have some dis-

advantages and some advantages over previous high frequency solutions. The main
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disadvantages of the new solutions are that they are not valid in the near zone and

some of the terms must be shadowed in a PO way. Since parts of the new solu-

tions must be shadowed in a PO way it is unclear whether they can be combined

with other UTD solutions to find the RCS of a general three-dimensional object.

On the other hand it has been shown that the new corner diffraction coefficients

and the new equivalent currents give the same results for first order diffraction.

The new solution approaches a definite limit normal to the plate, reducing to the

well known PO result in this direction. The new solution also agrees closely with

Method of Moments solutions for bistatic scattering from a flat plate.
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APPENDIX A

NEW CORNER DIFFRACTION COEFFICIENTS

The new comer diffraction coefficients are given in a form sinilar to previous

expressions for diffraction coefficients:

l -- Z• _ ~Dc Dc EleJs AI

2 dr'61~ d2
Dh2 = c ' +LP -a (A.2)

4rk cos - cos#' [",,2 "#,h,2 -

where the plus or minus sign is chosen depending on which endpoint contribution is

being calculated. Section 3.5 discusses choosing the correct sign. The expresions

for dLPO dUTD a0d dPO given by(O-face contribution only)-- "~s,h,2' *',h,2 ' ,/,2 e

fo d L P O l u ic a n d 0  ore gi e+y
a -2 1  '( ') cot - cot: ~~h,24 4

4 4
dT -c's (0,,r v _) cot0A

h,2 n h,2

a 2 4 4

h,
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sin#?S~C,(6, E) = sin

sin/3'

Ch(b, e) = in
sin b

C2(b,C) = sini (coti Cos + cotp'cos )
sin6

Cos -Y sin P cos (cos9 - Cos #1)2
"cos7 - i sin#'(sin6cosO +sin#'cosT')

Cos a sinPcos (cos8 - coso#) cosfi
sin fl s±i n')-

Cos- 1 # = -jln(± t+ 2)

IP -- , A21 >

Ui= {0 ! •<

1 , 0 >0

where the + sig is associated with dýPoj dPo, 4 TD, 4 !TD, djPO, and 4 0

while the - sign is associated with the dLPO, d4 TD, and 4p° terms. For the

special case of a flat plate (n 2 9) the contribution from both faces may be found

using

dLPO c a ~ ___qvot? ___y o i ( (A.3)a14 4
h,2 h2

4[ cot T° (-(f +1) ot + O,+)9
dUTD c (a,- w- a) )cot j (a - + cot

.h,2 n k,2 4 4

[cot ( w -(O + + c)
4

h,,2 2 h" 4'4



+ ~ ~ ~ 7 o(÷o+)]+ (a +
+[cot (7ta±-t(a + cot 4

Si= {1 -'> < (A.4)

where -y, a, and the other variables have been defiuied previously.
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APPENDIX B

EQUIVALENT CURRENTS FOR EDGE ON INCIDENCE

The steps required to show that the new equivalent currents axe finite for edge

on incidence (03 --+ 0 or 0' -+ r) are outlined in this appendix. Michaeli [141 gives

a very brief outline of the procedure required to find the fringe equivalent currents

as edge on incidence is approached in the limit.

Showing that the LPO and PO components of the equivalent currents are finite

for edge on incidence is fairly trivial, and is only briefly described here. Using the

form of the LPO components given in Equations (3.23) and (3.24) and the form of

the PO components given in Equations (3.29) and (3.30), along with the relations

Et c E,,sing~' (B.1)

Htcc HT,'sinj9' (B.2)

where E. and Ho/ are the magnitude of the incident electric and magnetic fields

respectively, it may be easily shown that. both equivalent currents approach finite

limits as 03' -+ 0 or Pt - 7r. It has been assumed that the face under consideration

is being illuminated by the incident field, otherwise the LPO and PO components

of the equivalent currents are identically zero.

Finding the UTD components of the equivalent currents as edge on incidence

is approached is more complicated. First an appoximation to the parameter a must

tc found for sin 0' -- 0. Using Equation (3.45) and the assumption sin Pt < cos 0'
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results in

a F.7 7r + j21n (sin/3') (B.3)

which leads to

S sin• a ,Zz -- (B.4)

sin •--a) Pý sin-F ' (B.5)

cos ) sin (B-6)

Using Equations (B.1), (B.2), (B.4), (B.5), and (B.6) in Equations (3.27) and

(3.28) and then letting 0' -+ 0 or letting 0' - 7r shows that MUTD and 4fUTD are

finite for edge on incidence. The contribution from both faces must be included to

show that the other component of the electric equivaient current (Ig"TD) is finite

for edge on incidence. The contribution to the equivalent currents from the N-face

is found by replacing i with -i, 81 with w - /fl, 0' with n7r - 0', 0/ with w - f3, and

0 with nwr - 0 in the expressions for the contribution to the equivalent currents

from the O-face. For ImTD the resulting expression for the contribution from both

faces is given by

TUTD 2j
ým ksin/0'

X 1/n(cos ao cot /' - cot/ lcos 4) sin [(?r - a,) /n]
coos(0)/n) - cos[(7r - a,,)/n] sin ao

1/n(- cosan cot/' - cot/icos (n" -4•)) sin [(r - n)/n]hi ( j•)
cos [(nr - 0) /ni - coO(R - an)/n] sin an Bt

(B.7)

where all Of the angles are measured with respect to the edge fixed coordinate

system associatr.d with the O-face. For sin#'1 -+ 0 it is easily shown that an ; ao

and the expressions for both an and ao are the same as the expression for a given

in Equation (B.3). Therefore combining the above with Equations (B.2), (B.4),
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(B.5), and (B-6) in Equation (B.7) one obtains an expression for JlTD which is

valid for regions of space where sin #' is small. After placing the entire expression

over a common denomrinator, the limit taken as edge on incidence is approached

is finite.

All of the equivalent currents are finite in the limit as edge on incidence is ap-

proached (except for tne forward scatter direction). In practice this means that as

long as the source is kept reasonably far away from edge on incidence the computer

should be able to take the limit numerically. The distance from edge on incidence

that must be maintained depends on the precision of the computer and which form

of the equivalent currents are used. In this regard considerable errors may accur in

finding IUTD if each face is considered separately, since the contribution to IUTD

from each face becomes infinte as edge on incidence is. approached (although the

sum. of the contributions from the two faces remains finite).
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APPENDIX C

RCS FOR NORMAL INCIDENCE ON A RECTANGULAR FLAT

PLATE

The RCS of a rectangular flat plate shown in Figure 136 is found using the new

equivalent currents. The field radiated by the equivalent currents on an arbitrarily

oriented finite straight edge is found first to simplify later calculations. The finite

straight edge is shown in Figure 137 along with the edge fixed coordinates required

to define the equivalent currents. The currents are substituted into the far zone

radiation integral

E ~Z 0  XS x II(z' ,R I dz °

+ S 1 i dz} (0.1)

Doing the integration in dosed form (only the phase of Et and Ht are functions

of z') results in

_ 1 sin [kj (cosi - cosl3')J
7" k sin P sin #' (cos f-cosf)

x {.(GieEt0 + GirnZoHt)- iGm ZOH I0} (C.2)
to t

where the relations between the equivalent currents and the functions GiC, Gi,

and Gm are given in Equation (3.53) and Equation (3.54), while Et0 and Jtito are

"the complex components of the incident electric and magnetic fields tangent to the

edge with the phase reference taken to be at the midpoint of the edge.
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Figure 136: Flat plate for RCS calculation with normal incidence.
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Figure 137: Equivalent currents on a finite straight edge.

Using the above results carefully will allow the RCS of the plate to be found for

normal incidence. The edge fixed coordinates for each edge of the rectangular plate

are shown in Figure 138 along with their relationship to the pattera coordinates.

The relationships between the pattern coordinates and the edge fixed coordinates

that will be used later are

coso•i sin op sin •p

sin 31 cos 1 -= - sin Op cose p

sin 01 sin 0I = cos Op

cos 02 = - sin Op cos Op

sin02 cos 2 = - sin Op sin Op

sin 2 sin 2 = cos Op

The expresaion for the total scattered field may be obtained from a superposition
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Figure 138: Relationship between the edge fixed coordinates and the pattern
coordinates.
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of the scattered field due to each edge. The phase reference is placed at the origin

of the pattern coordinate system. Using the expression from Equation (C.2) for

the scattered field from each edge (in the case of backscatter, fl' = " - ) results

in

g1 = 1 e-Ims sin(kw cosfln)
E" 7 8 n= 1,3 2k sin2 #ncos 3n

x {&~ (Gie (fln, On)Etno + Gimn(/3n,4On) ZoHlno)

- enGmn(flnj ,n)ZoHt 0} eijk 8ifOPcog Op

1 -jk sin (k cos fln)
7r a n-2,4 2k sin2 3 cos 3-

X {1n(Gie (fln, On)Et'no + Gim(fln, On)Zo~tno)

- n,,(.3n, On)ZHtno0 } Ii2kfsiOp cooOp (C.3)

where

i2 - ( 1)i(f-2)

where the exponential factors that have been added shift the phase references from

the center of each edge to the center of the plate and Et' 0 (H' 0) is the component

of the incident electric (magnetic) field tangent to edge n at the center of the edge.

Simply plugging Op = 0 (On, On = 7r/2, n = 1,2,3,4) in Equation (C.3) will not

work since some of the terms become infinite here. However if the limit is taken as

Op approaches zero, a finite result may be obtained. The algebra required in taking

the limit is fairly complicated, so to simplify the calculations the contribution from

each component of the current (LPO, UTD, and PO) is calculated separately, and

then the contributions are. summed to givc the total scattered field.

- gLPO ± gUTD_ gPO (C.4)
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The contribution from the LPO terms is found first. Letting

=Em0 + E~ o H = iHzo + ý oH; (C.5)

be the incident field at the origin (the center of the plate). Using

1LPO~,, ) = 1 sin 2 # sin 0 cos 4' (C.6)
S=2 (sin 2 6 icos2 4 + cos2 ,3)

Gý°(fl, 0) = 0 (C.7)

GLPo(# ,4) = -GLPo(0, 4) (c.8)

along with

Eto = ElOyJ•'rnG•°'•P (W9)

Hio = H 0 k siOvc°'O (c.10)

Eh30 = _Eyoe-j sin O, coo O (C.11)

Ho30 = -yoe-i4 'in clOP (C.12)

Hi20 = _ezoejkf ,inecoo (C.13)

Et40 = Ezoe-jkf snoPcO&OP (C.14)

00 = h -OE)• (0.15)

ý3= w-/1 44 = -42 i()ij

04= -9 2 044= W- 02 ; (02 t

(skipping the deruls) results in

ELPO- _ 3. ( e!ht (C.16)

As should be expected, the same result would be obtained using the PO currents

in the surface integral.
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Using the same procedure for the UTD components of the currents, which are

written in the same form as in Section 4.7,

) 1 vý2- sin P sin 4 V/sin2 pl(1 - cos4) + 2cos 2/9
se 2 (sin/6 cos. - cos 2t3) (0.17)

" ) - sin(Pcos/Pcos - (2.18)
2 sin 2 #(1 - cos 4) + 2cos 2 (0

1 sin 3 / cos
GMTD(•', b = 2 (sin2 cos -cos 2 p)

x ( 2 (o.19)
)( \fsin2 -(1 cos) + 2 cos2 (19

Plugging Equations (0.9) through (C.15) and Equations (C.17) through (C.19) in

Equation (C.3) and taking the limit as Op -4 0 results in

gUTD_ _ CJ].(w)--J Et + ••-(w tan2 Epstcot2  )-, £ (C.20)
I a s 7

Finally the contribution from the PO components of the currents is found.

Using the form of the currents given in Section 4.7

1 sin 2  9 sin4, (0.21)tP(e€ 2 Fw (,in -cos 0- co62)

G?2(/,0) -- 0 (0.22)

GPO(fl, 0) =- -GPO(O, 0) (0.23)

Plugging Equations (0.9) through (C.15) and Equations (0.21) through (0.23)

into Equation (0.3) results in

EPO jk e-ith 1* coI€p -b i (.

EP= - - (wt)- E' + -(wtan24,p + Icot, OP) El (C.24)

which is the same as EUTD

Combining the results of Equations (0.16), (0.20), and (0.24) gives the total

scattered field
.ik e-i•'

-= -)- A' (C.25)
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or converting it to RCS

17CO-PI 47r(we) 2

A2

0

Notice that the fringe components (UTD-PO) cancel for backscatter at normal

incidence, and the field is determined by the LPO component of the currents

(which predict the same fields as the PO surface integral).
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APPENDIX D

AN EQUIVALENT EXPRESSION FOR THE EQUIVALENT

CURRENTS

The expressions for the equivalent currents in Equations (4.16) and (4.18) are

derived here from previous expressions in Buyukdura [22] and Michaeli [131. Since

the expressions are quite complicated each of the three components (LPO, UTD,

and PO) will be derived separately.

Starting with the LPO components of the currents from Buyukdura (22].

- -LPOE!no5if C + -2H(cotj0co6s+cot O'cos0')C (D.1)

I jP 2k , sin Tk Ht

mLPO -2- , -,., (D.2)

where
(Coe sin P cos 8 + sin O'cos 0'(

S[(cos0 - cos/3,) 2 + (sin# coo4 + sin#i' cos4,)2]

Further separating the equivalent electric current into JLPO and ILPO components

results in

po 2jk0 ui snj (D14)
. f ,+ ,-T + (snPcos+sin0cos )

combining with

cosol = sinOtuinx.cos0+coaO1cosel (D.5)
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cosifl = sin8 1 sin/9' cosO' + cos 01cos,6' (D.6)
.ot 01 = Cos#9 - cos#'

sin/ cos 0 + sin (D.7)

results -in

O 2Yo Ei sin O'sin 01 1
e = -k t sin P cos- + cos4, (D.8)

Using a trigone- :_' ic identity from Section 3.4 results in

ILPO JYO isinolsin0l

The expression here is the same as that given in Section 4.7 except for the step

function which is implied in this expression since Buyukdura assumes 0-face in-

cidence. Using a similar procedure the expressions in Section 4.7 for IjjPO and

Al •PO may be derived.

Next the expression for 4•TD is developed. Starting with the expression for

I•TD derived by Buyukdura f22].

1LTTo, 31' ? o o - o ot

"sinB['(sin o +'c os')-(cos - cos')cos+'

(although the terms are not separated in this way by Buyukdura (22), it can be
shown that the part of I given here corresponds to 4.7 )

Using

€osj 2 2 cos' (D.1C)

csO62 = simO+ sin#co s4+s + (coo# - (D.11)

cost0 = sin 3 2 sinI3' cos cO) cos2 co8 -i' (D.12)
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results in
_ 2* sin 'cosB4 2

U HTD = - H c 2 + co s.0, im - (D .13)

where sin/tcos9'co

com - ' [cos 2 - cos P'] - (D.14)
• • -- sing

Using the trigonometric identity as before results in

1 UTD jslt sinfl'cos
- 2k sin %, sin 2

+ [cot (D.15)

L 4 4

which is the same as the expression given in Section 4.7. The resultu for 4 JTD and

M!ITD are obtained in a similar manner.

Finally the expression for MV0 of Section 4.7 is found. Starting with the

expression given by Michaeli 114]

hM po 2Z0 n 3) sin o)(D.16)
infHtos¢ scot3 - coss ) cosf+ 3' a)

COS• a sin/c' + kO S2  C (D.17)

Substituting the expression for cos a into the expression for MPO results in

- -- ,H,(,r-. Ht)5'fl - ')

n , P'coi + sin#'1 in coo + (coq- coso ) cos (D.18)

Using ,2, 0', and 02 defined previously.

Mp = 2ZHU(w _ 0)in4 sin (D.19)
ik 60/ COO 2 + Co60'2(
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Using the trigonometric identity from Section 3.4 as before results in

MPO= Zo iU( _- )sinsin#5sin02
M0 = 2k H 7r0sin Psin'02

+ cot 4(02 -cot 4(D.20)

which is the same as the expression given in Section 4.7. The apparent difference

due to the replacement of the S' function by the step function U(w" - 0) is only a

technicality since the expression given here gives the contribution from bo.1h faces,

but is valid only for 0-race in:idence while the expession in Section 4.7 gives the

contribution from both faces for either O-face or N-face indidence. The other two

terms 4 'c' and 14O may be found similarly.
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